1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.TestFunctions.Evaluators {
|
---|
34 | [Item("MultinormalFunction", "Evaluates a random multinormal function on a given point.")]
|
---|
35 | [StorableClass]
|
---|
36 | public class MultinormalEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
|
---|
37 |
|
---|
38 | private ItemList<RealVector> centers {
|
---|
39 | get { return (ItemList<RealVector>)Parameters["Centers"].ActualValue; }
|
---|
40 | set { Parameters["Centers"].ActualValue = value; }
|
---|
41 | }
|
---|
42 | private RealVector s_2s {
|
---|
43 | get { return (RealVector)Parameters["s^2s"].ActualValue; }
|
---|
44 | set { Parameters["s^2s"].ActualValue = value; }
|
---|
45 | }
|
---|
46 | private static Random Random = new Random();
|
---|
47 |
|
---|
48 | private Dictionary<int, List<RealVector>> stdCenters;
|
---|
49 | public IEnumerable<RealVector> Centers(int nDim) {
|
---|
50 | if (stdCenters == null)
|
---|
51 | stdCenters = new Dictionary<int, List<RealVector>>();
|
---|
52 | if (!stdCenters.ContainsKey(nDim))
|
---|
53 | stdCenters[nDim] = GetCenters(nDim).ToList();
|
---|
54 | return stdCenters[nDim];
|
---|
55 | }
|
---|
56 |
|
---|
57 | private IEnumerable<RealVector> GetCenters(int nDim) {
|
---|
58 | RealVector r0 = new RealVector(nDim);
|
---|
59 | for (int i = 0; i < r0.Length; i++)
|
---|
60 | r0[i] = 5;
|
---|
61 | yield return r0;
|
---|
62 | for (int i = 1; i < 1 << nDim; i++) {
|
---|
63 | RealVector r = new RealVector(nDim);
|
---|
64 | for (int j = 0; j < nDim; j++) {
|
---|
65 | r[j] = (i >> j) % 2 == 0 ? Random.NextDouble() + 4.5 : Random.NextDouble() + 14.5;
|
---|
66 | }
|
---|
67 | yield return r;
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | private Dictionary<int, List<double>> stdSigma_2s;
|
---|
72 | public IEnumerable<double> Sigma_2s(int nDim) {
|
---|
73 | if (stdSigma_2s == null)
|
---|
74 | stdSigma_2s = new Dictionary<int, List<double>>();
|
---|
75 | if (!stdSigma_2s.ContainsKey(nDim))
|
---|
76 | stdSigma_2s[nDim] = GetSigma_2s(nDim).ToList();
|
---|
77 | return stdSigma_2s[nDim];
|
---|
78 | }
|
---|
79 | private IEnumerable<double> GetSigma_2s(int nDim) {
|
---|
80 | yield return 0.2;
|
---|
81 | for (int i = 1; i < (1 << nDim) - 1; i++) {
|
---|
82 | yield return Random.NextDouble() * 0.5 + 0.75;
|
---|
83 | }
|
---|
84 | yield return 2;
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableConstructor]
|
---|
88 | protected MultinormalEvaluator(bool deserializing) : base(deserializing) { }
|
---|
89 | protected MultinormalEvaluator(MultinormalEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
90 | public MultinormalEvaluator() {
|
---|
91 | Parameters.Add(new ValueParameter<ItemList<RealVector>>("Centers", "Centers of normal distributions"));
|
---|
92 | Parameters.Add(new ValueParameter<RealVector>("s^2s", "sigma^2 of normal distributions"));
|
---|
93 | Parameters.Add(new LookupParameter<IRandom>("Random", "Random number generator"));
|
---|
94 | centers = new ItemList<RealVector>();
|
---|
95 | s_2s = new RealVector();
|
---|
96 | }
|
---|
97 |
|
---|
98 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
99 | return new MultinormalEvaluator(this, cloner);
|
---|
100 | }
|
---|
101 |
|
---|
102 | private double FastFindOptimum(out RealVector bestSolution) {
|
---|
103 | var optima = centers.Select((c, i) => new { f = EvaluateFunction(c), i }).OrderBy(v => v.f).ToList();
|
---|
104 | if (optima.Count == 0) {
|
---|
105 | bestSolution = new RealVector();
|
---|
106 | return 0;
|
---|
107 | } else {
|
---|
108 | var best = optima.First();
|
---|
109 | bestSolution = centers[best.i];
|
---|
110 | return best.f;
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | public static double N(RealVector x, RealVector x0, double s_2) {
|
---|
115 | Debug.Assert(x.Length == x0.Length);
|
---|
116 | double d = 0;
|
---|
117 | for (int i = 0; i < x.Length; i++) {
|
---|
118 | d += (x[i] - x0[i]) * (x[i] - x0[i]);
|
---|
119 | }
|
---|
120 | return Math.Exp(-d / (2 * s_2)) / (2 * Math.PI * s_2);
|
---|
121 | }
|
---|
122 |
|
---|
123 | public override bool Maximization {
|
---|
124 | get { return false; }
|
---|
125 | }
|
---|
126 |
|
---|
127 | public override DoubleMatrix Bounds {
|
---|
128 | get { return new DoubleMatrix(new double[,] { { 0, 20 } }); }
|
---|
129 | }
|
---|
130 |
|
---|
131 | public override double BestKnownQuality {
|
---|
132 | get {
|
---|
133 | if (centers.Count == 0) {
|
---|
134 | return -1 / (2 * Math.PI * 0.2);
|
---|
135 | } else {
|
---|
136 | RealVector bestSolution;
|
---|
137 | return FastFindOptimum(out bestSolution);
|
---|
138 | }
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | public override int MinimumProblemSize { get { return 1; } }
|
---|
143 |
|
---|
144 | public override int MaximumProblemSize { get { return 100; } }
|
---|
145 |
|
---|
146 | private RealVector Shorten(RealVector x, int dimensions) {
|
---|
147 | return new RealVector(x.Take(dimensions).ToArray());
|
---|
148 | }
|
---|
149 |
|
---|
150 | public override RealVector GetBestKnownSolution(int dimension) {
|
---|
151 | if (centers.Count == 0) {
|
---|
152 | RealVector r = new RealVector(dimension);
|
---|
153 | for (int i = 0; i < r.Length; i++)
|
---|
154 | r[i] = 5;
|
---|
155 | return r;
|
---|
156 | } else {
|
---|
157 | RealVector bestSolution;
|
---|
158 | FastFindOptimum(out bestSolution);
|
---|
159 | return Shorten(bestSolution, dimension);
|
---|
160 | }
|
---|
161 | }
|
---|
162 |
|
---|
163 | public double Evaluate(RealVector point) {
|
---|
164 | return EvaluateFunction(point);
|
---|
165 | }
|
---|
166 |
|
---|
167 | protected override double EvaluateFunction(RealVector point) {
|
---|
168 | double value = 0;
|
---|
169 | if (centers.Count == 0) {
|
---|
170 | var c = Centers(point.Length).GetEnumerator();
|
---|
171 | var s = Sigma_2s(point.Length).GetEnumerator();
|
---|
172 | while (c.MoveNext() && s.MoveNext()) {
|
---|
173 | value -= N(point, c.Current, s.Current);
|
---|
174 | }
|
---|
175 | } else {
|
---|
176 | for (int i = 0; i < centers.Count; i++) {
|
---|
177 | value -= N(point, centers[i], s_2s[i]);
|
---|
178 | }
|
---|
179 | }
|
---|
180 | return value;
|
---|
181 | }
|
---|
182 | }
|
---|
183 | }
|
---|