Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/MatyasEvaluator.cs @ 10264

Last change on this file since 10264 was 9980, checked in by abeham, 11 years ago

#1909:

  • Integrated TestFunctionInstances branch into trunk
  • Removed the branch
File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.RealVectorEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.TestFunctions {
30  /// <summary>
31  /// The Matyas function is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2213.htm, last accessed April 12th, 2010.
32  /// </summary>
33  [Item("MatyasEvaluator", "Evaluates the Matyas function on a given point. The optimum of this function is 0 at the origin. It is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2213.htm, last accessed April 12th, 2010.")]
34  [StorableClass]
35  public class MatyasEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
36    public override string FunctionName { get { return "Matyas"; } }
37    /// <summary>
38    /// Returns false as the Matyas function is a minimization problem.
39    /// </summary>
40    public override bool Maximization {
41      get { return false; }
42    }
43    /// <summary>
44    /// Gets the optimum function value (0).
45    /// </summary>
46    public override double BestKnownQuality {
47      get { return 0; }
48    }
49    /// <summary>
50    /// Gets the lower and upper bound of the function.
51    /// </summary>
52    public override DoubleMatrix Bounds {
53      get { return new DoubleMatrix(new double[,] { { -10, 10 } }); }
54    }
55    /// <summary>
56    /// Gets the minimum problem size (2).
57    /// </summary>
58    public override int MinimumProblemSize {
59      get { return 2; }
60    }
61    /// <summary>
62    /// Gets the maximum problem size (2).
63    /// </summary>
64    public override int MaximumProblemSize {
65      get { return 2; }
66    }
67
68    [StorableConstructor]
69    protected MatyasEvaluator(bool deserializing) : base(deserializing) { }
70    protected MatyasEvaluator(MatyasEvaluator original, Cloner cloner) : base(original, cloner) { }
71    public MatyasEvaluator() : base() { }
72
73    public override IDeepCloneable Clone(Cloner cloner) {
74      return new MatyasEvaluator(this, cloner);
75    }
76
77    public override RealVector GetBestKnownSolution(int dimension) {
78      if (dimension != 2) throw new ArgumentException(Name + ": This function is only defined for 2 dimensions.", "dimension");
79      return new RealVector(dimension);
80    }
81    /// <summary>
82    /// Evaluates the test function for a specific <paramref name="point"/>.
83    /// </summary>
84    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
85    /// <returns>The result value of the Matyas function at the given point.</returns>
86    public static double Apply(RealVector point) {
87      return 0.26 * (point[0] * point[0] + point[1] * point[1]) - 0.48 * point[0] * point[1];
88    }
89
90    /// <summary>
91    /// Evaluates the test function for a specific <paramref name="point"/>.
92    /// </summary>
93    /// <remarks>Calls <see cref="Apply"/>.</remarks>
94    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
95    /// <returns>The result value of the Matyas function at the given point.</returns>
96    public override double Evaluate(RealVector point) {
97      return Apply(point);
98    }
99  }
100}
Note: See TracBrowser for help on using the repository browser.