[3150] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[3150] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[4722] | 23 | using HeuristicLab.Common;
|
---|
[3150] | 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
[3154] | 26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[3150] | 28 |
|
---|
[3170] | 29 | namespace HeuristicLab.Problems.TestFunctions {
|
---|
[3150] | 30 | /// <summary>
|
---|
[3315] | 31 | /// The Griewank function is introduced in Griewank, A.O. 1981. Generalized descent for global optimization. Journal of Optimization Theory and Applications 34, pp. 11-39.
|
---|
| 32 | /// It is a multimodal fitness function in the range [-600,600]^n.
|
---|
| 33 | /// Here it is implemented as described (without the modifications) in Locatelli, M. 2003. A note on the Griewank test function. Journal of Global Optimization 25, pp. 169-174, Springer.
|
---|
[3150] | 34 | /// </summary>
|
---|
[3315] | 35 | [Item("GriewankEvaluator", "Evaluates the Griewank function on a given point. The optimum of this function is 0 at the origin. It is introduced by Griewank A.O. 1981 and implemented as described (without the modifications) in Locatelli, M. 2003. A note on the Griewank test function. Journal of Global Optimization 25, pp. 169-174, Springer.")]
|
---|
[3154] | 36 | [StorableClass]
|
---|
[3315] | 37 | public class GriewankEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
|
---|
[9980] | 38 | public override string FunctionName { get { return "Griewank"; } }
|
---|
[3154] | 39 | /// <summary>
|
---|
[3318] | 40 | /// Returns false as the Griewank function is a minimization problem.
|
---|
[3154] | 41 | /// </summary>
|
---|
| 42 | public override bool Maximization {
|
---|
| 43 | get { return false; }
|
---|
[3150] | 44 | }
|
---|
[3154] | 45 | /// <summary>
|
---|
| 46 | /// Gets the optimum function value (0).
|
---|
| 47 | /// </summary>
|
---|
| 48 | public override double BestKnownQuality {
|
---|
| 49 | get { return 0; }
|
---|
| 50 | }
|
---|
| 51 | /// <summary>
|
---|
| 52 | /// Gets the lower and upper bound of the function.
|
---|
| 53 | /// </summary>
|
---|
| 54 | public override DoubleMatrix Bounds {
|
---|
| 55 | get { return new DoubleMatrix(new double[,] { { -600, 600 } }); }
|
---|
| 56 | }
|
---|
| 57 | /// <summary>
|
---|
[3315] | 58 | /// Gets the minimum problem size (1).
|
---|
[3154] | 59 | /// </summary>
|
---|
| 60 | public override int MinimumProblemSize {
|
---|
[3315] | 61 | get { return 1; }
|
---|
[3154] | 62 | }
|
---|
| 63 | /// <summary>
|
---|
| 64 | /// Gets the (theoretical) maximum problem size (2^31 - 1).
|
---|
| 65 | /// </summary>
|
---|
| 66 | public override int MaximumProblemSize {
|
---|
| 67 | get { return int.MaxValue; }
|
---|
| 68 | }
|
---|
[3150] | 69 |
|
---|
[4722] | 70 | [StorableConstructor]
|
---|
| 71 | protected GriewankEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 72 | protected GriewankEvaluator(GriewankEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 73 | public GriewankEvaluator() : base() { }
|
---|
| 74 |
|
---|
| 75 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 76 | return new GriewankEvaluator(this, cloner);
|
---|
| 77 | }
|
---|
| 78 |
|
---|
[3781] | 79 | public override RealVector GetBestKnownSolution(int dimension) {
|
---|
| 80 | return new RealVector(dimension);
|
---|
| 81 | }
|
---|
[3150] | 82 | /// <summary>
|
---|
[3315] | 83 | /// If dimension of the problem is less or equal than 100 the values of Math.Sqrt(i + 1) are precomputed.
|
---|
| 84 | /// </summary>
|
---|
| 85 | private double[] sqrts;
|
---|
| 86 |
|
---|
| 87 | /// <summary>
|
---|
[3150] | 88 | /// Evaluates the test function for a specific <paramref name="point"/>.
|
---|
| 89 | /// </summary>
|
---|
| 90 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
[3318] | 91 | /// <returns>The result value of the Griewank function at the given point.</returns>
|
---|
[3154] | 92 | public static double Apply(RealVector point) {
|
---|
[3150] | 93 | double result = 0;
|
---|
| 94 | double val = 0;
|
---|
| 95 |
|
---|
| 96 | for (int i = 0; i < point.Length; i++)
|
---|
| 97 | result += point[i] * point[i];
|
---|
| 98 | result = result / 4000;
|
---|
| 99 |
|
---|
| 100 | val = Math.Cos(point[0]);
|
---|
| 101 | for (int i = 1; i < point.Length; i++)
|
---|
| 102 | val *= Math.Cos(point[i] / Math.Sqrt(i + 1));
|
---|
| 103 |
|
---|
| 104 | result = result - val + 1;
|
---|
[3315] | 105 | return result;
|
---|
[3150] | 106 | }
|
---|
| 107 |
|
---|
| 108 | /// <summary>
|
---|
[3315] | 109 | /// Evaluates the test function for a specific <paramref name="point"/>. It uses an array of precomputed values for Math.Sqrt(i + 1) with i = 0..N
|
---|
| 110 | /// </summary>
|
---|
| 111 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
| 112 | /// <param name="sqrts">The precomputed array of square roots.</param>
|
---|
[3318] | 113 | /// <returns>The result value of the Griewank function at the given point.</returns>
|
---|
[3315] | 114 | private static double Apply(RealVector point, double[] sqrts) {
|
---|
| 115 | double result = 0;
|
---|
| 116 | double val = 0;
|
---|
| 117 |
|
---|
| 118 | for (int i = 0; i < point.Length; i++)
|
---|
| 119 | result += point[i] * point[i];
|
---|
| 120 | result = result / 4000;
|
---|
| 121 |
|
---|
| 122 | val = Math.Cos(point[0]);
|
---|
| 123 | for (int i = 1; i < point.Length; i++)
|
---|
| 124 | val *= Math.Cos(point[i] / sqrts[i]);
|
---|
| 125 |
|
---|
| 126 | result = result - val + 1;
|
---|
| 127 | return result;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | /// <summary>
|
---|
[3150] | 131 | /// Evaluates the test function for a specific <paramref name="point"/>.
|
---|
| 132 | /// </summary>
|
---|
| 133 | /// <remarks>Calls <see cref="Apply"/>.</remarks>
|
---|
| 134 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
[3318] | 135 | /// <returns>The result value of the Griewank function at the given point.</returns>
|
---|
[9407] | 136 | public override double Evaluate(RealVector point) {
|
---|
[3315] | 137 | if (point.Length > 100)
|
---|
| 138 | return Apply(point);
|
---|
| 139 | else {
|
---|
| 140 | if (sqrts == null || sqrts.Length < point.Length) ComputeSqrts(point.Length);
|
---|
| 141 | return Apply(point, sqrts);
|
---|
| 142 | }
|
---|
[3150] | 143 | }
|
---|
[3315] | 144 |
|
---|
| 145 | private void ComputeSqrts(int length) {
|
---|
| 146 | sqrts = new double[length];
|
---|
| 147 | for (int i = 0; i < length; i++) sqrts[i] = Math.Sqrt(i + 1);
|
---|
| 148 | }
|
---|
[3150] | 149 | }
|
---|
| 150 | }
|
---|