[7873] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9456] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7873] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
[8022] | 23 | using HeuristicLab.Core;
|
---|
[7873] | 24 | using HeuristicLab.Data;
|
---|
[8022] | 25 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 26 | using HeuristicLab.Operators;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[7873] | 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.LinearAssignment {
|
---|
[8022] | 31 | [Item("LinearAssignmentProblemSolver", "Uses the hungarian algorithm to solve linear assignment problems.")]
|
---|
| 32 | [StorableClass]
|
---|
| 33 | public sealed class LinearAssignmentProblemSolver : SingleSuccessorOperator {
|
---|
[7873] | 34 | private const int UNASSIGNED = -1;
|
---|
| 35 |
|
---|
[8022] | 36 | public ILookupParameter<DoubleMatrix> CostsParameter {
|
---|
| 37 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Costs"]; }
|
---|
| 38 | }
|
---|
| 39 | public ILookupParameter<Permutation> AssignmentParameter {
|
---|
| 40 | get { return (ILookupParameter<Permutation>)Parameters["Assignment"]; }
|
---|
| 41 | }
|
---|
| 42 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
| 43 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | [StorableConstructor]
|
---|
| 47 | private LinearAssignmentProblemSolver(bool deserializing) : base(deserializing) { }
|
---|
| 48 | private LinearAssignmentProblemSolver(LinearAssignmentProblemSolver original, Cloner cloner) : base(original, cloner) { }
|
---|
| 49 | public LinearAssignmentProblemSolver()
|
---|
| 50 | : base() {
|
---|
| 51 | Parameters.Add(new LookupParameter<DoubleMatrix>("Costs", LinearAssignmentProblem.CostsDescription));
|
---|
| 52 | Parameters.Add(new LookupParameter<Permutation>("Assignment", "The assignment solution to create."));
|
---|
| 53 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the solution."));
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 57 | return new LinearAssignmentProblemSolver(this, cloner);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public override IOperation Apply() {
|
---|
| 61 | var costs = CostsParameter.ActualValue;
|
---|
| 62 | double quality;
|
---|
| 63 | var solution = Solve(costs, out quality);
|
---|
| 64 |
|
---|
| 65 | AssignmentParameter.ActualValue = new Permutation(PermutationTypes.Absolute, solution);
|
---|
| 66 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 67 |
|
---|
| 68 | return base.Apply();
|
---|
| 69 | }
|
---|
| 70 |
|
---|
[7873] | 71 | /// <summary>
|
---|
| 72 | /// Uses the Hungarian algorithm to solve the linear assignment problem (LAP).
|
---|
| 73 | /// The LAP is defined as minimize f(p) = Sum(i = 1..N, c_{i, p(i)}) for a permutation p and an NxN cost matrix.
|
---|
| 74 | ///
|
---|
| 75 | /// The runtime complexity of the algorithm is O(n^3). The algorithm is deterministic and terminates
|
---|
| 76 | /// returning one of the optimal solutions and the corresponding quality.
|
---|
| 77 | /// </summary>
|
---|
| 78 | /// <remarks>
|
---|
| 79 | /// The algorithm is written similar to the fortran implementation given in http://www.seas.upenn.edu/qaplib/code.d/qapglb.f
|
---|
| 80 | /// </remarks>
|
---|
| 81 | /// <param name="costs">An NxN costs matrix.</param>
|
---|
| 82 | /// <param name="quality">The quality value of the optimal solution.</param>
|
---|
| 83 | /// <returns>The optimal solution.</returns>
|
---|
| 84 | public static int[] Solve(DoubleMatrix costs, out double quality) {
|
---|
| 85 | int length = costs.Rows;
|
---|
| 86 | // solve the linear assignment problem f(p) = Sum(i = 1..|p|, c_{i, p(i)})
|
---|
| 87 |
|
---|
| 88 | int[] rowAssign = new int[length], colAssign = new int[length];
|
---|
| 89 | double[] dualCol = new double[length], dualRow = new double[length];
|
---|
| 90 | for (int i = 0; i < length; i++) { // mark all positions as untouched
|
---|
| 91 | rowAssign[i] = UNASSIGNED;
|
---|
| 92 | colAssign[i] = UNASSIGNED;
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | for (int i = 0; i < length; i++) { // find the minimum (base) level for each row
|
---|
| 96 | double min = costs[i, 0];
|
---|
| 97 | int minCol = 0;
|
---|
| 98 | dualCol[0] = min;
|
---|
| 99 | for (int j = 1; j < length; j++) {
|
---|
| 100 | if (costs[i, j] <= min) {
|
---|
| 101 | min = costs[i, j];
|
---|
| 102 | minCol = j;
|
---|
| 103 | }
|
---|
| 104 | if (costs[i, j] > dualCol[j])
|
---|
| 105 | dualCol[j] = costs[i, j];
|
---|
| 106 | }
|
---|
| 107 | dualRow[i] = min; // this will be the value of our dual variable
|
---|
| 108 | if (colAssign[minCol] == UNASSIGNED) {
|
---|
| 109 | colAssign[minCol] = i;
|
---|
| 110 | rowAssign[i] = minCol;
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | for (int j = 0; j < length; j++) { // calculate the second dual variable
|
---|
| 115 | if (colAssign[j] != UNASSIGNED) dualCol[j] = 0;
|
---|
| 116 | else {
|
---|
| 117 | int minRow = 0;
|
---|
| 118 | for (int i = 0; i < length; i++) {
|
---|
| 119 | if (dualCol[j] > 0 && costs[i, j] - dualRow[i] < dualCol[j]) {
|
---|
| 120 | dualCol[j] = costs[i, j] - dualRow[i]; // the value is the original costs minus the first dual value
|
---|
| 121 | minRow = i;
|
---|
| 122 | }
|
---|
| 123 | }
|
---|
| 124 | if (rowAssign[minRow] == UNASSIGNED) {
|
---|
| 125 | colAssign[j] = minRow;
|
---|
| 126 | rowAssign[minRow] = j;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | // at this point costs_ij - dualRow_i - dualColumn_j results in a matrix that has at least one zero in every row and every column
|
---|
| 132 |
|
---|
| 133 | for (int i = 0; i < length; i++) { // try to make the remaining assignments
|
---|
| 134 | if (rowAssign[i] == UNASSIGNED) {
|
---|
| 135 | double min = dualRow[i];
|
---|
| 136 | for (int j = 0; j < length; j++) {
|
---|
| 137 | if (colAssign[j] == UNASSIGNED && (costs[i, j] - min - dualCol[j]).IsAlmost(0.0)) {
|
---|
| 138 | rowAssign[i] = j;
|
---|
| 139 | colAssign[j] = i;
|
---|
| 140 | break;
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | bool[] marker = new bool[length];
|
---|
| 147 | double[] dplus = new double[length], dminus = new double[length];
|
---|
| 148 | int[] rowMarks = new int[length];
|
---|
| 149 |
|
---|
| 150 | for (int u = 0; u < length; u++) {
|
---|
| 151 | if (rowAssign[u] == UNASSIGNED) {
|
---|
| 152 | for (int i = 0; i < length; i++) {
|
---|
| 153 | rowMarks[i] = u;
|
---|
| 154 | marker[i] = false;
|
---|
| 155 | dplus[i] = double.MaxValue;
|
---|
| 156 | dminus[i] = costs[u, i] - dualRow[u] - dualCol[i];
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | dplus[u] = 0;
|
---|
| 160 | int index = -1;
|
---|
| 161 | double minD = double.MaxValue;
|
---|
| 162 | while (true) {
|
---|
| 163 | minD = double.MaxValue;
|
---|
| 164 | for (int i = 0; i < length; i++) {
|
---|
| 165 | if (!marker[i] && dminus[i] < minD) {
|
---|
| 166 | minD = dminus[i];
|
---|
| 167 | index = i;
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | if (colAssign[index] == UNASSIGNED) break;
|
---|
| 172 | marker[index] = true;
|
---|
| 173 | dplus[colAssign[index]] = minD;
|
---|
| 174 | for (int i = 0; i < length; i++) {
|
---|
| 175 | if (marker[i]) continue;
|
---|
| 176 | double compare = minD + costs[colAssign[index], i] - dualCol[i] - dualRow[colAssign[index]];
|
---|
| 177 | if (dminus[i] > compare) {
|
---|
| 178 | dminus[i] = compare;
|
---|
| 179 | rowMarks[i] = colAssign[index];
|
---|
| 180 | }
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | } // while(true)
|
---|
| 184 |
|
---|
| 185 | while (true) {
|
---|
| 186 | colAssign[index] = rowMarks[index];
|
---|
| 187 | var ind = rowAssign[rowMarks[index]];
|
---|
| 188 | rowAssign[rowMarks[index]] = index;
|
---|
| 189 | if (rowMarks[index] == u) break;
|
---|
| 190 |
|
---|
| 191 | index = ind;
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | for (int i = 0; i < length; i++) {
|
---|
| 195 | if (dplus[i] < double.MaxValue)
|
---|
| 196 | dualRow[i] += minD - dplus[i];
|
---|
| 197 | if (dminus[i] < minD)
|
---|
| 198 | dualCol[i] += dminus[i] - minD;
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | quality = 0;
|
---|
| 204 | for (int i = 0; i < length; i++) {
|
---|
| 205 | quality += costs[i, rowAssign[i]];
|
---|
| 206 | }
|
---|
| 207 | return rowAssign;
|
---|
| 208 | }
|
---|
| 209 | }
|
---|
| 210 | }
|
---|