Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.Instances.Regression/3.3/Various/PolyTen.cs @ 7830

Last change on this file since 7830 was 7698, checked in by sforsten, 13 years ago

#1784:

  • ProblemInstanceProvider are sorted now
  • the return values of ValueGenerator have been changed to !IEnumerable
  • changes have been applied to classes which are using the ValueGenerator
  • change of the cast in ProblemInstanceProviderViewGeneric and !importButton.Enable is set now in SetEnabledStateOfControls
File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.Regression {
27  public class PolyTen : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Ploy-10 y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10"; } }
30    public override string Description {
31      get {
32        return "Paper: A Simple but Theoretically-motivated Method to Control Bloat in Genetic Programming" + Environment.NewLine
33        + "Authors: Riccardo Poli" + Environment.NewLine
34        + "Function: y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10" + Environment.NewLine
35        + "Terminal set: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10" + Environment.NewLine
36        + "Fitness was minus the sum of the absolute values of the errors made over 50 fitness cases. "
37        + "These were generated by randomly assigning values to the variables xiin the range [1, 1].";
38      }
39    }
40    protected override string TargetVariable { get { return "Y"; } }
41    protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
42    protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
43    protected override int TrainingPartitionStart { get { return 0; } }
44    protected override int TrainingPartitionEnd { get { return 250; } }
45    protected override int TestPartitionStart { get { return 250; } }
46    protected override int TestPartitionEnd { get { return 500; } }
47
48    protected override List<List<double>> GenerateValues() {
49      List<List<double>> data = new List<List<double>>();
50      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
51        data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
52      }
53
54      double x1, x2, x3, x4, x5, x6, x7, x8, x9, x10;
55      List<double> results = new List<double>();
56      for (int i = 0; i < data[0].Count; i++) {
57        x1 = data[0][i];
58        x2 = data[1][i];
59        x3 = data[2][i];
60        x4 = data[3][i];
61        x5 = data[4][i];
62        x6 = data[5][i];
63        x7 = data[6][i];
64        x8 = data[7][i];
65        x9 = data[8][i];
66        x10 = data[9][i];
67        results.Add(x1 * x2 + x3 * x4 + x5 * x6 + x1 * x7 * x9 + x3 * x6 * x10);
68      }
69      data.Add(results);
70
71      return data;
72    }
73  }
74}
Note: See TracBrowser for help on using the repository browser.