[7890] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[8885] | 23 | using System.Collections;
|
---|
[7890] | 24 | using System.Collections.Generic;
|
---|
[8885] | 25 | using System.IO;
|
---|
| 26 | using System.Linq;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
[7890] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[8885] | 29 |
|
---|
[7890] | 30 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 31 | public class TimeSeriesPrognosisCSVInstanceProvider : TimeSeriesPrognosisInstanceProvider {
|
---|
| 32 | public override string Name {
|
---|
| 33 | get { return "CSV Problem Provider"; }
|
---|
| 34 | }
|
---|
| 35 | public override string Description {
|
---|
| 36 | get {
|
---|
| 37 | return "";
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 | public override Uri WebLink {
|
---|
| 41 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/UsersFAQ#DataAnalysisImportFileFormat"); }
|
---|
| 42 | }
|
---|
| 43 | public override string ReferencePublication {
|
---|
| 44 | get { return ""; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
| 48 | return new List<IDataDescriptor>();
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public override ITimeSeriesPrognosisProblemData LoadData(IDataDescriptor descriptor) {
|
---|
| 52 | throw new NotImplementedException();
|
---|
| 53 | }
|
---|
[8885] | 54 |
|
---|
| 55 | public override bool CanImportData { get { return true; } }
|
---|
| 56 |
|
---|
| 57 | public override ITimeSeriesPrognosisProblemData ImportData(string path) {
|
---|
| 58 | TableFileParser csvFileParser = new TableFileParser();
|
---|
| 59 | csvFileParser.Parse(path);
|
---|
| 60 |
|
---|
| 61 | Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
|
---|
| 62 | string targetVar = csvFileParser.VariableNames.Last();
|
---|
| 63 |
|
---|
| 64 | IEnumerable<string> allowedInputVars = dataset.DoubleVariables.Where(x => !x.Equals(targetVar));
|
---|
| 65 |
|
---|
| 66 | ITimeSeriesPrognosisProblemData timeSeriesPrognosisData = new TimeSeriesPrognosisProblemData(dataset, allowedInputVars, targetVar);
|
---|
| 67 |
|
---|
| 68 | int trainingPartEnd = csvFileParser.Rows * 2 / 3;
|
---|
| 69 | timeSeriesPrognosisData.TrainingPartition.Start = 0;
|
---|
| 70 | timeSeriesPrognosisData.TrainingPartition.End = trainingPartEnd;
|
---|
| 71 | timeSeriesPrognosisData.TestPartition.Start = trainingPartEnd;
|
---|
| 72 | timeSeriesPrognosisData.TestPartition.End = csvFileParser.Rows;
|
---|
| 73 |
|
---|
| 74 | int pos = path.LastIndexOf('\\');
|
---|
| 75 | if (pos < 0)
|
---|
| 76 | timeSeriesPrognosisData.Name = path;
|
---|
| 77 | else {
|
---|
| 78 | pos++;
|
---|
| 79 | timeSeriesPrognosisData.Name = path.Substring(pos, path.Length - pos);
|
---|
| 80 | }
|
---|
| 81 | return timeSeriesPrognosisData;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | protected override ITimeSeriesPrognosisProblemData ImportData(string path, TimeSeriesPrognosisImportType type, TableFileParser csvFileParser) {
|
---|
| 85 | Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
|
---|
| 86 |
|
---|
| 87 | // turn of input variables that are constant in the training partition
|
---|
| 88 | var allowedInputVars = new List<string>();
|
---|
[9021] | 89 | int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100;
|
---|
[8885] | 90 | trainingPartEnd = trainingPartEnd > 0 ? trainingPartEnd : 1;
|
---|
| 91 | var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
|
---|
| 92 | if (trainingIndizes.Count() >= 2) {
|
---|
| 93 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
| 94 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
| 95 | variableName != type.TargetVariable)
|
---|
| 96 | allowedInputVars.Add(variableName);
|
---|
| 97 | }
|
---|
| 98 | } else {
|
---|
| 99 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(type.TargetVariable)));
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | TimeSeriesPrognosisProblemData timeSeriesPrognosisData = new TimeSeriesPrognosisProblemData(dataset, allowedInputVars, type.TargetVariable);
|
---|
| 103 |
|
---|
| 104 | timeSeriesPrognosisData.TrainingPartition.Start = 0;
|
---|
| 105 | timeSeriesPrognosisData.TrainingPartition.End = trainingPartEnd;
|
---|
| 106 | timeSeriesPrognosisData.TestPartition.Start = trainingPartEnd;
|
---|
| 107 | timeSeriesPrognosisData.TestPartition.End = csvFileParser.Rows;
|
---|
| 108 |
|
---|
| 109 | timeSeriesPrognosisData.Name = Path.GetFileName(path);
|
---|
| 110 |
|
---|
| 111 | return timeSeriesPrognosisData;
|
---|
| 112 | }
|
---|
[7890] | 113 | }
|
---|
| 114 | }
|
---|