Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/VariableNetworks/VariableNetworkInstanceProvider.cs @ 14630

Last change on this file since 14630 was 14630, checked in by gkronber, 8 years ago

#2288: introduced base class for variable network instance description and implemented GRR and Linear variable networks as specific classes

File size: 3.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Problems.DataAnalysis;
26using HeuristicLab.Random;
27
28namespace HeuristicLab.Problems.Instances.DataAnalysis {
29  public class VariableNetworkInstanceProvider : ArtificialRegressionInstanceProvider {
30    public override string Name {
31      get { return "Variable Network Instances"; }
32    }
33    public override string Description {
34      get { return "A set of regression benchmark instances for variable network analysis"; }
35    }
36    public override Uri WebLink {
37      get { return new Uri("http://dev.heuristiclab.com"); }
38    }
39    public override string ReferencePublication {
40      get { return ""; }
41    }
42    public int Seed { get; private set; }
43
44    public VariableNetworkInstanceProvider() : this((int)DateTime.Now.Ticks) { }
45    public VariableNetworkInstanceProvider(int seed) : base() {
46      Seed = seed;
47    }
48
49    public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
50      var numVariables = new int[] { 10, 20, 50, 100 };
51      var noiseRatios = new double[] { 0, 0.01, 0.05, 0.1, 0.2 };
52      var rand = new MersenneTwister((uint)Seed); // use fixed seed for deterministic problem generation
53      var lr = (from size in numVariables
54                from noiseRatio in noiseRatios
55                select new LinearVariableNetwork(size, noiseRatio, new MersenneTwister((uint)rand.Next())))
56                .Cast<IDataDescriptor>()
57                .ToList();
58      var gp = (from size in numVariables
59                from noiseRatio in noiseRatios
60                select new GaussianProcessVariableNetwork(size, noiseRatio, new MersenneTwister((uint)rand.Next())))
61                .Cast<IDataDescriptor>()
62                .ToList();
63      return lr.Concat(gp);
64    }
65
66    public override IRegressionProblemData LoadData(IDataDescriptor descriptor) {
67      var varNetwork = descriptor as VariableNetwork;
68      if (varNetwork == null) throw new ArgumentException("VariableNetworkInstanceProvider expects an VariableNetwork data descriptor.");
69      // base call generates a regression problem data
70      var problemData = base.LoadData(varNetwork);
71      problemData.Description = varNetwork.Description + Environment.NewLine + varNetwork.NetworkDefinition;
72      return problemData;
73    }
74  }
75}
Note: See TracBrowser for help on using the repository browser.