Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFifteen.cs @ 7860

Last change on this file since 7860 was 7860, checked in by sforsten, 12 years ago

#1784:

  • added additional Keijzer problem instances
  • capitalized names real world problem instances
  • added Friedman I and II
  • added link to VariousInstanceProvider
  • changed symbol of info button for ProblemInstanceProvider in ProblemInstanceConsumerView
  • added CSVProvider for classification and regression problems
  • ProblemInstanceProviderViewGeneric only shows controls to load problem instances, if the selected ProblemInstanceProvider contains IDataDescriptor
File size: 3.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.DataAnalysis {
27  public class KeijzerFunctionFifteen : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Keijzer 15 f(x, y) = 8 / (2 + x^2 + y^2)"; } }
30    public override string Description {
31      get {
32        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
33        + "Authors: Maarten Keijzer" + Environment.NewLine
34        + "Function: f(x, y) = 8 / (2 + x^2 + y^2)" + Environment.NewLine
35        + "range(train): 20 Train cases x,y = rnd(-3, 3)" + Environment.NewLine
36        + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine
37        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine
38        + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the intercal [-3, 3] (not ca. 360000 as described) "
39        + ", but 5000 cases are created";
40      }
41    }
42    protected override string TargetVariable { get { return "F"; } }
43    protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } }
44    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return 20; } }
47    protected override int TestPartitionStart { get { return 2500; } }
48    protected override int TestPartitionEnd { get { return 5000; } }
49
50    protected override List<List<double>> GenerateValues() {
51      List<List<double>> data = new List<List<double>>();
52      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
53        data.Add(ValueGenerator.GenerateUniformDistributedValues(5000, -3, 3).ToList());
54      }
55
56      double x, y;
57      List<double> results = new List<double>();
58      for (int i = 0; i < data[0].Count; i++) {
59        x = data[0][i];
60        y = data[1][i];
61        results.Add(8 / (2 + Math.Pow(x, 2) + Math.Pow(y, 2)));
62      }
63      data.Add(results);
64
65      return data;
66    }
67  }
68}
Note: See TracBrowser for help on using the repository browser.