Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionEleven.cs @ 8085

Last change on this file since 8085 was 7860, checked in by sforsten, 13 years ago

#1784:

  • added additional Keijzer problem instances
  • capitalized names real world problem instances
  • added Friedman I and II
  • added link to VariousInstanceProvider
  • changed symbol of info button for ProblemInstanceProvider in ProblemInstanceConsumerView
  • added CSVProvider for classification and regression problems
  • ProblemInstanceProviderViewGeneric only shows controls to load problem instances, if the selected ProblemInstanceProvider contains IDataDescriptor
File size: 3.1 KB
RevLine 
[7860]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.DataAnalysis {
27  public class KeijzerFunctionEleven : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Keijzer 11 f(x, y) = x ^ y"; } }
30    public override string Description {
31      get {
32        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
33        + "Authors: Maarten Keijzer" + Environment.NewLine
34        + "Function: f(x, y) = x ^ y" + Environment.NewLine
35        + "range(train): 100 Train cases x,y = rnd(0, 1)" + Environment.NewLine
36        + "range(test): x,y = [0:0.01:1]" + Environment.NewLine
37        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
38      }
39    }
40    protected override string TargetVariable { get { return "F"; } }
41    protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } }
42    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
43    protected override int TrainingPartitionStart { get { return 0; } }
44    protected override int TrainingPartitionEnd { get { return 100; } }
45    protected override int TestPartitionStart { get { return 100; } }
46    protected override int TestPartitionEnd { get { return 10301; } }
47
48    protected override List<List<double>> GenerateValues() {
49      List<List<double>> data = new List<List<double>>();
50
51      List<double> oneVariableTestData = ValueGenerator.GenerateSteps(0, 1, 0.01).ToList();
52      List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
53
54      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
55      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
56        data.Add(ValueGenerator.GenerateUniformDistributedValues(100, 0, 1).ToList());
57        data[i].AddRange(combinations[i]);
58      }
59
60      double x, y;
61      List<double> results = new List<double>();
62      for (int i = 0; i < data[0].Count; i++) {
63        x = data[0][i];
64        y = data[1][i];
65        results.Add(Math.Pow(x, y));
66      }
67      data.Add(results);
68
69      return data;
70    }
71  }
72}
Note: See TracBrowser for help on using the repository browser.