1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
29 | public class FriedmanRandomFunctionInstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
30 | public override string Name {
|
---|
31 | get { return "Friedman Random Functions"; }
|
---|
32 | }
|
---|
33 | public override string Description {
|
---|
34 | get { return "A set of regression benchmark instances as described by Friedman in the Greedy Function Approximation paper"; }
|
---|
35 | }
|
---|
36 | public override Uri WebLink {
|
---|
37 | get { return new Uri("http://dev.heuristiclab.com"); }
|
---|
38 | }
|
---|
39 | public override string ReferencePublication {
|
---|
40 | get { return "Friedman, Jerome H. 'Greedy function approximation: a gradient boosting machine.' Annals of statistics (2001): 1189-1232."; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
44 | var numVariables = new int[] { 10, 25, 50, 100 };
|
---|
45 | var noiseRatios = new double[] { 0.01, 0.05, 0.1 };
|
---|
46 | var rand = new System.Random(1234); // use fixed seed for deterministic problem generation
|
---|
47 | return (from size in numVariables
|
---|
48 | from noiseRatio in noiseRatios
|
---|
49 | select new FriedmanRandomFunction(size, noiseRatio, new MersenneTwister((uint)rand.Next())))
|
---|
50 | .Cast<IDataDescriptor>()
|
---|
51 | .ToList();
|
---|
52 | }
|
---|
53 |
|
---|
54 | public override IRegressionProblemData LoadData(IDataDescriptor descriptor) {
|
---|
55 | var varNetwork = descriptor as FriedmanRandomFunction;
|
---|
56 | if (varNetwork == null) throw new ArgumentException("FriedmanRandomFunctionInstanceProvider expects an FriedmanRandomFunction data descriptor.");
|
---|
57 | // base call generates a regression problem data
|
---|
58 | var regProblemData = base.LoadData(varNetwork);
|
---|
59 | var problemData =
|
---|
60 | new RegressionProblemData(
|
---|
61 | regProblemData.Dataset, regProblemData.AllowedInputVariables, regProblemData.TargetVariable);
|
---|
62 |
|
---|
63 | // copy values from regProblemData to feature selection problem data
|
---|
64 | problemData.Name = regProblemData.Name;
|
---|
65 | problemData.Description = regProblemData.Description;
|
---|
66 | problemData.TrainingPartition.Start = regProblemData.TrainingPartition.Start;
|
---|
67 | problemData.TrainingPartition.End = regProblemData.TrainingPartition.End;
|
---|
68 | problemData.TestPartition.Start = regProblemData.TestPartition.Start;
|
---|
69 | problemData.TestPartition.End = regProblemData.TestPartition.End;
|
---|
70 |
|
---|
71 | return problemData;
|
---|
72 | }
|
---|
73 | }
|
---|
74 | }
|
---|