[7849] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 24 |
|
---|
| 25 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 26 | public abstract class ArtificialClassificationDataDescriptor : IDataDescriptor {
|
---|
| 27 | public abstract string Name { get; }
|
---|
| 28 | public abstract string Description { get; }
|
---|
| 29 |
|
---|
| 30 | protected abstract string TargetVariable { get; }
|
---|
| 31 | protected abstract string[] InputVariables { get; }
|
---|
| 32 | protected abstract string[] AllowedInputVariables { get; }
|
---|
| 33 | protected abstract int TrainingPartitionStart { get; }
|
---|
| 34 | protected abstract int TrainingPartitionEnd { get; }
|
---|
| 35 | protected abstract int TestPartitionStart { get; }
|
---|
| 36 | protected abstract int TestPartitionEnd { get; }
|
---|
| 37 |
|
---|
| 38 | public IClassificationProblemData GenerateClassificationData() {
|
---|
| 39 | Dataset dataset = new Dataset(InputVariables, this.GenerateValues());
|
---|
| 40 |
|
---|
| 41 | ClassificationProblemData claData = new ClassificationProblemData(dataset, AllowedInputVariables, TargetVariable);
|
---|
| 42 | claData.Name = this.Name;
|
---|
| 43 | claData.Description = this.Description;
|
---|
| 44 | claData.TrainingPartition.Start = this.TrainingPartitionStart;
|
---|
| 45 | claData.TrainingPartition.End = this.TrainingPartitionEnd;
|
---|
| 46 | claData.TestPartition.Start = this.TestPartitionStart;
|
---|
| 47 | claData.TestPartition.End = this.TestPartitionEnd;
|
---|
| 48 | return claData;
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | protected abstract List<List<double>> GenerateValues();
|
---|
| 52 | }
|
---|
| 53 | }
|
---|