Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.GrammaticalEvolution/3.4/ArtificialAnt/GEArtificialAntProblem.cs @ 12966

Last change on this file since 12966 was 12915, checked in by gkronber, 9 years ago

#2472:

  • include Problems.GeneticProgramming in solution
  • use Problems.GeneticProgramming from Problems.GrammaticalEvolution (only ArtificialAnt part)
  • simplified GEArtificialAntProblem by using BasicProblem<IntegerVectorEncoding>
File size: 5.4 KB
RevLine 
[10071]1#region License Information
2/* HeuristicLab
[12012]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[10071]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
[10968]19 *
20 * Author: Sabine Winkler
[10071]21 */
22#endregion
23
[12915]24using System.Diagnostics.Contracts;
[10071]25using System.Linq;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.IntegerVectorEncoding;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[12915]33using HeuristicLab.Problems.GeneticProgramming.ArtificialAnt;
[10071]34using HeuristicLab.Problems.GrammaticalEvolution.Mappers;
35
36namespace HeuristicLab.Problems.GrammaticalEvolution {
37  [Item("Grammatical Evolution Artificial Ant Problem", "Represents the Artificial Ant problem, implemented in Grammatical Evolution.")]
[12504]38  [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)]
[10071]39  [StorableClass]
[12915]40  public sealed class GEArtificialAntProblem : SingleObjectiveBasicProblem<IntegerVectorEncoding>, IStorableContent {
[10071]41    public string Filename { get; set; }
42
43    #region Parameter Properties
44    public IValueParameter<BoolMatrix> WorldParameter {
45      get { return (IValueParameter<BoolMatrix>)Parameters["World"]; }
46    }
[12915]47    public IFixedValueParameter<IntValue> MaxTimeStepsParameter {
48      get { return (IFixedValueParameter<IntValue>)Parameters["MaximumTimeSteps"]; }
[10071]49    }
50    public IValueParameter<IGenotypeToPhenotypeMapper> GenotypeToPhenotypeMapperParameter {
51      get { return (IValueParameter<IGenotypeToPhenotypeMapper>)Parameters["GenotypeToPhenotypeMapper"]; }
52    }
53    #endregion
54
55    #region Properties
56    public BoolMatrix World {
57      get { return WorldParameter.Value; }
58      set { WorldParameter.Value = value; }
59    }
[12915]60    public int MaxTimeSteps {
61      get { return MaxTimeStepsParameter.Value.Value; }
62      set { MaxTimeStepsParameter.Value.Value = value; }
[10071]63    }
64    #endregion
65
66    [StorableConstructor]
67    private GEArtificialAntProblem(bool deserializing) : base(deserializing) { }
68    [StorableHook(HookType.AfterDeserialization)]
[12915]69    private void AfterDeserialization() { }
70
71    public override bool Maximization {
72      get { return true; }
[10071]73    }
74
[12915]75    [Storable]
76    // parameters of the wrapped problem cannot be changed therefore it is not strictly necessary to clone and store it
77    private readonly HeuristicLab.Problems.GeneticProgramming.ArtificialAnt.Problem wrappedAntProblem;
78
[10071]79    private GEArtificialAntProblem(GEArtificialAntProblem original, Cloner cloner)
80      : base(original, cloner) {
[12915]81      this.wrappedAntProblem = cloner.Clone(original.wrappedAntProblem);
[10071]82    }
83
84    public override IDeepCloneable Clone(Cloner cloner) {
85      return new GEArtificialAntProblem(this, cloner);
86    }
87
88    public GEArtificialAntProblem()
[12915]89      : base() {
90      wrappedAntProblem = new HeuristicLab.Problems.GeneticProgramming.ArtificialAnt.Problem();
91      Parameters.Add(new ValueParameter<BoolMatrix>("World", "The world for the artificial ant with scattered food items.", wrappedAntProblem.World));
92      Parameters.Add(new FixedValueParameter<IntValue>("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600)));
[10071]93      Parameters.Add(new ValueParameter<IGenotypeToPhenotypeMapper>("GenotypeToPhenotypeMapper", "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree).", new DepthFirstMapper()));
94
[12915]95      Encoding = new IntegerVectorEncoding(30) { Bounds = new IntMatrix(new int[,] { { 0, 100 } }) };
[10071]96
[12915]97      BestKnownQuality = wrappedAntProblem.BestKnownQuality;
[10071]98    }
99
[12915]100    public override double Evaluate(Individual individual, IRandom random) {
101      var vector = individual.IntegerVector();
[10071]102
[12915]103      var bounds = Encoding.Bounds;
104      var len = Encoding.Length;
105      var grammar = wrappedAntProblem.Encoding.Grammar;
106      var mapper = GenotypeToPhenotypeMapperParameter.Value;
[10071]107
[12915]108      var tree = mapper.Map(random, bounds, len, grammar, vector);
[10071]109
[12915]110      Interpreter interpreter = new Interpreter(tree, World, MaxTimeSteps);
111      interpreter.Run();
[10071]112
[12915]113      return interpreter.FoodEaten;
[10071]114    }
115
[12915]116    public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
117      var bounds = Encoding.Bounds;
118      var len = Encoding.Length;
119      var grammar = wrappedAntProblem.Encoding.Grammar;
120      var mapper = GenotypeToPhenotypeMapperParameter.Value;
[10071]121
[12915]122      var trees = individuals
123        .Select(ind => mapper.Map(random, bounds, len, grammar, ind.IntegerVector()))
124        .ToArray();
[10071]125
[12915]126      wrappedAntProblem.Analyze(trees, qualities, results, random);
[10071]127    }
128  }
129}
Note: See TracBrowser for help on using the repository browser.