[12937] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12937] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 31 | using HeuristicLab.Problems.Instances;
|
---|
| 32 |
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.GeneticProgramming.BasicSymbolicRegression {
|
---|
| 35 | [Item("Koza-style Symbolic Regression", "An implementation of symbolic regression without bells-and-whistles. Use \"Symbolic Regression Problem (single-objective)\" if you want to use all features.")]
|
---|
| 36 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 900)]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class Problem : SymbolicExpressionTreeProblem, IRegressionProblem, IProblemInstanceConsumer<IRegressionProblemData>, IProblemInstanceExporter<IRegressionProblemData> {
|
---|
| 39 |
|
---|
| 40 | #region parameter names
|
---|
| 41 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 42 | #endregion
|
---|
| 43 |
|
---|
| 44 | #region Parameter Properties
|
---|
| 45 | IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } }
|
---|
| 46 |
|
---|
| 47 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 48 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 49 | }
|
---|
| 50 | #endregion
|
---|
| 51 |
|
---|
| 52 | #region Properties
|
---|
| 53 | public IRegressionProblemData ProblemData {
|
---|
| 54 | get { return ProblemDataParameter.Value; }
|
---|
| 55 | set { ProblemDataParameter.Value = value; }
|
---|
| 56 | }
|
---|
| 57 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
[13269] | 58 | #endregion
|
---|
[12937] | 59 |
|
---|
[13269] | 60 | public event EventHandler ProblemDataChanged;
|
---|
[12937] | 61 |
|
---|
| 62 | public override bool Maximization {
|
---|
| 63 | get { return true; }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[13269] | 66 | #region item cloning and persistence
|
---|
| 67 | // persistence
|
---|
| 68 | [StorableConstructor]
|
---|
| 69 | private Problem(bool deserializing) : base(deserializing) { }
|
---|
| 70 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 71 | private void AfterDeserialization() {
|
---|
| 72 | RegisterEventHandlers();
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | // cloning
|
---|
| 76 | private Problem(Problem original, Cloner cloner)
|
---|
| 77 | : base(original, cloner) {
|
---|
| 78 | RegisterEventHandlers();
|
---|
| 79 | }
|
---|
| 80 | public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); }
|
---|
| 81 | #endregion
|
---|
| 82 |
|
---|
[12937] | 83 | public Problem()
|
---|
| 84 | : base() {
|
---|
| 85 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data for the regression problem", new RegressionProblemData()));
|
---|
| 86 |
|
---|
| 87 | var g = new SimpleSymbolicExpressionGrammar(); // empty grammar is replaced in UpdateGrammar()
|
---|
| 88 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 100, 17);
|
---|
| 89 |
|
---|
| 90 | UpdateGrammar();
|
---|
| 91 | RegisterEventHandlers();
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 |
|
---|
| 95 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
| 96 | // Doesn't use classes from HeuristicLab.Problems.DataAnalysis.Symbolic to make sure that the implementation can be fully understood easily.
|
---|
| 97 | // HeuristicLab.Problems.DataAnalysis.Symbolic would already provide all the necessary functionality (esp. interpreter) but at a much higher complexity.
|
---|
| 98 | // Another argument is that we don't need a reference to HeuristicLab.Problems.DataAnalysis.Symbolic
|
---|
| 99 |
|
---|
| 100 | var problemData = ProblemData;
|
---|
| 101 | var rows = ProblemData.TrainingIndices.ToArray();
|
---|
| 102 | var target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 103 | var predicted = Interpret(tree, problemData.Dataset, rows);
|
---|
| 104 |
|
---|
| 105 | OnlineCalculatorError errorState;
|
---|
| 106 | var r = OnlinePearsonsRCalculator.Calculate(target, predicted, out errorState);
|
---|
| 107 | if (errorState != OnlineCalculatorError.None) r = 0;
|
---|
| 108 | return r * r;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | private IEnumerable<double> Interpret(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows) {
|
---|
| 112 | // skip programRoot and startSymbol
|
---|
| 113 | return InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), dataset, rows);
|
---|
| 114 | }
|
---|
[13269] | 115 |
|
---|
[12937] | 116 | private IEnumerable<double> InterpretRec(ISymbolicExpressionTreeNode node, IDataset dataset, IEnumerable<int> rows) {
|
---|
[13267] | 117 | Func<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode, Func<double, double, double>, IEnumerable<double>> binaryEval =
|
---|
[13269] | 118 | (left, right, f) => InterpretRec(left, dataset, rows).Zip(InterpretRec(right, dataset, rows), f);
|
---|
[12937] | 119 |
|
---|
| 120 | switch (node.Symbol.Name) {
|
---|
[13267] | 121 | case "+": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x + y);
|
---|
| 122 | case "*": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x * y);
|
---|
| 123 | case "-": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x - y);
|
---|
| 124 | case "%": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => y.IsAlmost(0.0) ? 0.0 : x / y); // protected division
|
---|
[12937] | 125 | default: {
|
---|
| 126 | double erc;
|
---|
| 127 | if (double.TryParse(node.Symbol.Name, out erc)) {
|
---|
| 128 | return rows.Select(_ => erc);
|
---|
| 129 | } else {
|
---|
| 130 | // assume that this is a variable name
|
---|
| 131 | return dataset.GetDoubleValues(node.Symbol.Name, rows);
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 | #region events
|
---|
| 139 | private void RegisterEventHandlers() {
|
---|
| 140 | ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
|
---|
| 141 | if (ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
|
---|
| 145 | ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
| 146 | OnProblemDataChanged();
|
---|
| 147 | OnReset();
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | private void ProblemData_Changed(object sender, EventArgs e) {
|
---|
| 151 | OnReset();
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | private void OnProblemDataChanged() {
|
---|
| 155 | UpdateGrammar();
|
---|
| 156 |
|
---|
| 157 | var handler = ProblemDataChanged;
|
---|
| 158 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | private void UpdateGrammar() {
|
---|
| 162 | // whenever ProblemData is changed we create a new grammar with the necessary symbols
|
---|
| 163 | var g = new SimpleSymbolicExpressionGrammar();
|
---|
| 164 | g.AddSymbols(new[] { "+", "*", "%", "-" }, 2, 2); // % is protected division 1/0 := 0
|
---|
| 165 |
|
---|
| 166 | foreach (var variableName in ProblemData.AllowedInputVariables)
|
---|
| 167 | g.AddTerminalSymbol(variableName);
|
---|
| 168 |
|
---|
| 169 | // generate ephemeral random consts in the range [-10..+10[ (2*number of variables)
|
---|
| 170 | var rand = new System.Random();
|
---|
| 171 | for (int i = 0; i < ProblemData.AllowedInputVariables.Count() * 2; i++) {
|
---|
| 172 | string newErcSy;
|
---|
| 173 | do {
|
---|
| 174 | newErcSy = string.Format("{0:F2}", rand.NextDouble() * 20 - 10);
|
---|
| 175 | } while (g.Symbols.Any(sy => sy.Name == newErcSy)); // it might happen that we generate the same constant twice
|
---|
| 176 | g.AddTerminalSymbol(newErcSy);
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | Encoding.Grammar = g;
|
---|
| 180 | }
|
---|
| 181 | #endregion
|
---|
| 182 |
|
---|
| 183 | #region Import & Export
|
---|
| 184 | public void Load(IRegressionProblemData data) {
|
---|
| 185 | Name = data.Name;
|
---|
| 186 | Description = data.Description;
|
---|
| 187 | ProblemData = data;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | public IRegressionProblemData Export() {
|
---|
| 191 | return ProblemData;
|
---|
| 192 | }
|
---|
| 193 | #endregion
|
---|
| 194 | }
|
---|
| 195 | }
|
---|