Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionSolution.cs @ 6452

Last change on this file since 6452 was 6411, checked in by mkommend, 14 years ago

#1506: Restructured calculation of results in IDataAnalysisSolutions and fixed bug in SymbolicDiscriminantClassisificationEstimatedValuesView.

File size: 9.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Data;
26using HeuristicLab.Optimization;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  /// <summary>
31  /// Represents a regression data analysis solution
32  /// </summary>
33  [StorableClass]
34  public class RegressionSolution : DataAnalysisSolution, IRegressionSolution {
35    private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
36    private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
37    private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
38    private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
39    private const string TrainingRelativeErrorResultName = "Average relative error (training)";
40    private const string TestRelativeErrorResultName = "Average relative error (test)";
41    private const string TrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)";
42    private const string TestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)";
43
44    public new IRegressionModel Model {
45      get { return (IRegressionModel)base.Model; }
46      protected set { base.Model = value; }
47    }
48
49    public new IRegressionProblemData ProblemData {
50      get { return (IRegressionProblemData)base.ProblemData; }
51      protected set { base.ProblemData = value; }
52    }
53
54    public double TrainingMeanSquaredError {
55      get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
56      private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
57    }
58
59    public double TestMeanSquaredError {
60      get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
61      private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
62    }
63
64    public double TrainingRSquared {
65      get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
66      private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
67    }
68
69    public double TestRSquared {
70      get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
71      private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
72    }
73
74    public double TrainingRelativeError {
75      get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
76      private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
77    }
78
79    public double TestRelativeError {
80      get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
81      private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
82    }
83
84    public double TrainingNormalizedMeanSquaredError {
85      get { return ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value; }
86      private set { ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; }
87    }
88
89    public double TestNormalizedMeanSquaredError {
90      get { return ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value; }
91      private set { ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value = value; }
92    }
93
94
95    [StorableConstructor]
96    protected RegressionSolution(bool deserializing) : base(deserializing) { }
97    protected RegressionSolution(RegressionSolution original, Cloner cloner)
98      : base(original, cloner) {
99    }
100    public RegressionSolution(IRegressionModel model, IRegressionProblemData problemData)
101      : base(model, problemData) {
102      Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
103      Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
104      Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
105      Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
106      Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new PercentValue()));
107      Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new PercentValue()));
108      Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleValue()));
109      Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleValue()));
110
111      CalculateResults();
112    }
113
114    public override IDeepCloneable Clone(Cloner cloner) {
115      return new RegressionSolution(this, cloner);
116    }
117
118    protected override void RecalculateResults() {
119      CalculateResults();
120    }
121
122    private void CalculateResults() {
123      double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
124      IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
125      double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
126      IEnumerable<double> originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
127
128      OnlineCalculatorError errorState;
129      double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
130      TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
131      double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
132      TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
133
134      double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
135      TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
136      double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
137      TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
138
139      double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
140      TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
141      double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
142      TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
143
144      double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
145      TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
146      double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
147      TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
148    }
149
150    public virtual IEnumerable<double> EstimatedValues {
151      get {
152        return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
153      }
154    }
155
156    public virtual IEnumerable<double> EstimatedTrainingValues {
157      get {
158        return GetEstimatedValues(ProblemData.TrainingIndizes);
159      }
160    }
161
162    public virtual IEnumerable<double> EstimatedTestValues {
163      get {
164        return GetEstimatedValues(ProblemData.TestIndizes);
165      }
166    }
167
168    public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
169      return Model.GetEstimatedValues(ProblemData.Dataset, rows);
170    }
171  }
172}
Note: See TracBrowser for help on using the repository browser.