[5620] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[5777] | 22 | using System;
|
---|
[5620] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
[5777] | 27 | using HeuristicLab.Optimization;
|
---|
[5620] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Abstract base class for regression data analysis solutions
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public abstract class RegressionSolution : DataAnalysisSolution, IRegressionSolution {
|
---|
[5649] | 36 | private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
|
---|
| 37 | private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
|
---|
| 38 | private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
|
---|
| 39 | private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
|
---|
| 40 | private const string TrainingRelativeErrorResultName = "Average relative error (training)";
|
---|
| 41 | private const string TestRelativeErrorResultName = "Average relative error (test)";
|
---|
| 42 |
|
---|
[5717] | 43 | public new IRegressionModel Model {
|
---|
| 44 | get { return (IRegressionModel)base.Model; }
|
---|
| 45 | protected set { base.Model = value; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public new IRegressionProblemData ProblemData {
|
---|
| 49 | get { return (IRegressionProblemData)base.ProblemData; }
|
---|
| 50 | protected set { base.ProblemData = value; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public double TrainingMeanSquaredError {
|
---|
| 54 | get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
|
---|
| 55 | private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public double TestMeanSquaredError {
|
---|
| 59 | get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
|
---|
| 60 | private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public double TrainingRSquared {
|
---|
| 64 | get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
|
---|
| 65 | private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public double TestRSquared {
|
---|
| 69 | get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
|
---|
| 70 | private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public double TrainingRelativeError {
|
---|
| 74 | get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
|
---|
| 75 | private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public double TestRelativeError {
|
---|
| 79 | get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
|
---|
| 80 | private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 |
|
---|
[5620] | 84 | [StorableConstructor]
|
---|
| 85 | protected RegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
| 86 | protected RegressionSolution(RegressionSolution original, Cloner cloner)
|
---|
| 87 | : base(original, cloner) {
|
---|
| 88 | }
|
---|
[5624] | 89 | public RegressionSolution(IRegressionModel model, IRegressionProblemData problemData)
|
---|
| 90 | : base(model, problemData) {
|
---|
[5717] | 91 | Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
|
---|
| 92 | Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
|
---|
| 93 | Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
|
---|
| 94 | Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
|
---|
| 95 | Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new PercentValue()));
|
---|
| 96 | Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new PercentValue()));
|
---|
| 97 |
|
---|
| 98 | RecalculateResults();
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | protected override void OnProblemDataChanged(EventArgs e) {
|
---|
| 102 | base.OnProblemDataChanged(e);
|
---|
| 103 | RecalculateResults();
|
---|
| 104 | }
|
---|
| 105 | protected override void OnModelChanged(EventArgs e) {
|
---|
| 106 | base.OnModelChanged(e);
|
---|
| 107 | RecalculateResults();
|
---|
| 108 | }
|
---|
| 109 |
|
---|
[5736] | 110 | protected void RecalculateResults() {
|
---|
[5649] | 111 | double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
|
---|
| 112 | IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
| 113 | double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
|
---|
| 114 | IEnumerable<double> originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
|
---|
| 115 |
|
---|
| 116 | double trainingMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues);
|
---|
| 117 | double testMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTestValues, originalTestValues);
|
---|
| 118 | double trainingR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues);
|
---|
| 119 | double testR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTestValues, originalTestValues);
|
---|
| 120 | double trainingRelError = OnlineMeanAbsolutePercentageErrorEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues);
|
---|
| 121 | double testRelError = OnlineMeanAbsolutePercentageErrorEvaluator.Calculate(estimatedTestValues, originalTestValues);
|
---|
| 122 |
|
---|
[5717] | 123 | TrainingMeanSquaredError = trainingMSE;
|
---|
| 124 | TestMeanSquaredError = testMSE;
|
---|
| 125 | TrainingRSquared = trainingR2;
|
---|
| 126 | TestRSquared = testR2;
|
---|
| 127 | TrainingRelativeError = trainingRelError;
|
---|
| 128 | TestRelativeError = testRelError;
|
---|
[5620] | 129 | }
|
---|
| 130 |
|
---|
| 131 | public virtual IEnumerable<double> EstimatedValues {
|
---|
| 132 | get {
|
---|
| 133 | return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | public virtual IEnumerable<double> EstimatedTrainingValues {
|
---|
| 138 | get {
|
---|
| 139 | return GetEstimatedValues(ProblemData.TrainingIndizes);
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | public virtual IEnumerable<double> EstimatedTestValues {
|
---|
| 144 | get {
|
---|
| 145 | return GetEstimatedValues(ProblemData.TestIndizes);
|
---|
| 146 | }
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
[5649] | 150 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
[5620] | 151 | }
|
---|
| 152 | }
|
---|
| 153 | }
|
---|