Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionEnsembleSolution.cs @ 6459

Last change on this file since 6459 was 6302, checked in by gkronber, 14 years ago

#1450: fixed cloning bug and a problem in the regression line chart view.

File size: 8.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27using System;
28using HeuristicLab.Data;
29
30namespace HeuristicLab.Problems.DataAnalysis {
31  /// <summary>
32  /// Represents regression solutions that contain an ensemble of multiple regression models
33  /// </summary>
34  [StorableClass]
35  [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")]
36  // [Creatable("Data Analysis")]
37  public class RegressionEnsembleSolution : RegressionSolution, IRegressionEnsembleSolution {
38    public new IRegressionEnsembleModel Model {
39      get { return (IRegressionEnsembleModel)base.Model; }
40    }
41
42    [Storable]
43    private Dictionary<IRegressionModel, IntRange> trainingPartitions;
44    [Storable]
45    private Dictionary<IRegressionModel, IntRange> testPartitions;
46
47    [StorableConstructor]
48    protected RegressionEnsembleSolution(bool deserializing) : base(deserializing) { }
49    protected RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner)
50      : base(original, cloner) {
51      trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
52      testPartitions = new Dictionary<IRegressionModel, IntRange>();
53      foreach (var pair in original.trainingPartitions) {
54        trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
55      }
56      foreach (var pair in original.testPartitions) {
57        testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
58      }
59      RecalculateResults();
60    }
61
62    public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData)
63      : base(new RegressionEnsembleModel(models), new RegressionEnsembleProblemData(problemData)) {
64      trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
65      testPartitions = new Dictionary<IRegressionModel, IntRange>();
66      foreach (var model in models) {
67        trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone();
68        testPartitions[model] = (IntRange)problemData.TestPartition.Clone();
69      }
70      RecalculateResults();
71    }
72
73    public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
74      : base(new RegressionEnsembleModel(models), new RegressionEnsembleProblemData(problemData)) {
75      this.trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
76      this.testPartitions = new Dictionary<IRegressionModel, IntRange>();
77      var modelEnumerator = models.GetEnumerator();
78      var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
79      var testPartitionEnumerator = testPartitions.GetEnumerator();
80      while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
81        this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone();
82        this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone();
83      }
84      if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
85        throw new ArgumentException();
86      }
87      RecalculateResults();
88    }
89
90    public override IDeepCloneable Clone(Cloner cloner) {
91      return new RegressionEnsembleSolution(this, cloner);
92    }
93
94    public override IEnumerable<double> EstimatedTrainingValues {
95      get {
96        var rows = ProblemData.TrainingIndizes;
97        var estimatedValuesEnumerators = (from model in Model.Models
98                                          select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() })
99                                         .ToList();
100        var rowsEnumerator = rows.GetEnumerator();
101        // aggregate to make sure that MoveNext is called for all enumerators
102        while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
103          int currentRow = rowsEnumerator.Current;
104
105          var selectedEnumerators = from pair in estimatedValuesEnumerators
106                                    where RowIsTrainingForModel(currentRow, pair.Model) && !RowIsTestForModel(currentRow, pair.Model)
107                                    select pair.EstimatedValuesEnumerator;
108          yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
109        }
110      }
111    }
112
113    public override IEnumerable<double> EstimatedTestValues {
114      get {
115        var rows = ProblemData.TestIndizes;
116        var estimatedValuesEnumerators = (from model in Model.Models
117                                          select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() })
118                                         .ToList();
119        var rowsEnumerator = ProblemData.TestIndizes.GetEnumerator();
120        // aggregate to make sure that MoveNext is called for all enumerators
121        while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
122          int currentRow = rowsEnumerator.Current;
123
124          var selectedEnumerators = from pair in estimatedValuesEnumerators
125                                    where RowIsTestForModel(currentRow, pair.Model)
126                                    select pair.EstimatedValuesEnumerator;
127
128          yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
129        }
130      }
131    }
132
133    private bool RowIsTrainingForModel(int currentRow, IRegressionModel model) {
134      return trainingPartitions == null || !trainingPartitions.ContainsKey(model) ||
135              (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End);
136    }
137
138    private bool RowIsTestForModel(int currentRow, IRegressionModel model) {
139      return testPartitions == null || !testPartitions.ContainsKey(model) ||
140              (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End);
141    }
142
143    public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
144      return from xs in GetEstimatedValueVectors(ProblemData.Dataset, rows)
145             select AggregateEstimatedValues(xs);
146    }
147
148    public IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(Dataset dataset, IEnumerable<int> rows) {
149      var estimatedValuesEnumerators = (from model in Model.Models
150                                        select model.GetEstimatedValues(dataset, rows).GetEnumerator())
151                                       .ToList();
152
153      while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
154        yield return from enumerator in estimatedValuesEnumerators
155                     select enumerator.Current;
156      }
157    }
158
159    private double AggregateEstimatedValues(IEnumerable<double> estimatedValues) {
160      return estimatedValues.DefaultIfEmpty(double.NaN).Average();
161    }
162  }
163}
Note: See TracBrowser for help on using the repository browser.