Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionEnsembleSolution.cs @ 6206

Last change on this file since 6206 was 6184, checked in by gkronber, 14 years ago

#1450: merged r5816 from the branch and implemented first version of ensemble solutions for regression. The ensembles are only produced by cross validation.

File size: 11.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27using System;
28using HeuristicLab.Data;
29
30namespace HeuristicLab.Problems.DataAnalysis {
31  /// <summary>
32  /// Represents regression solutions that contain an ensemble of multiple regression models
33  /// </summary>
34  [StorableClass]
35  [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")]
36  // [Creatable("Data Analysis")]
37  public class RegressionEnsembleSolution : RegressionSolution, IRegressionEnsembleSolution {
38    public new IRegressionEnsembleModel Model {
39      get { return (IRegressionEnsembleModel)base.Model; }
40    }
41
42    [Storable]
43    private Dictionary<IRegressionModel, IntRange> trainingPartitions;
44    [Storable]
45    private Dictionary<IRegressionModel, IntRange> testPartitions;
46
47    [StorableConstructor]
48    protected RegressionEnsembleSolution(bool deserializing) : base(deserializing) { }
49    protected RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner)
50      : base(original, cloner) {
51    }
52    public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData)
53      : base(new RegressionEnsembleModel(models), problemData) {
54      trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
55      testPartitions = new Dictionary<IRegressionModel, IntRange>();
56      foreach (var model in models) {
57        trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone();
58        testPartitions[model] = (IntRange)problemData.TestPartition.Clone();
59      }
60      RecalculateResults();
61    }
62
63    public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
64      : base(new RegressionEnsembleModel(models), problemData) {
65      this.trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
66      this.testPartitions = new Dictionary<IRegressionModel, IntRange>();
67      var modelEnumerator = models.GetEnumerator();
68      var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
69      var testPartitionEnumerator = testPartitions.GetEnumerator();
70      while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
71        this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone();
72        this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone();
73      }
74      if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
75        throw new ArgumentException();
76      }
77
78      RecalculateResults();
79    }
80
81    private void RecalculateResults() {
82      double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
83      var trainingIndizes = Enumerable.Range(ProblemData.TrainingPartition.Start,
84        ProblemData.TrainingPartition.End - ProblemData.TrainingPartition.Start);
85      IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, trainingIndizes);
86      double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
87      IEnumerable<double> originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
88
89      OnlineCalculatorError errorState;
90      double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
91      TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
92      double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
93      TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
94
95      double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
96      TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
97      double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
98      TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
99
100      double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
101      TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
102      double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
103      TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
104
105      double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
106      TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
107      double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
108      TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
109    }
110
111    public override IDeepCloneable Clone(Cloner cloner) {
112      return new RegressionEnsembleSolution(this, cloner);
113    }
114
115    public override IEnumerable<double> EstimatedTrainingValues {
116      get {
117        var rows = Enumerable.Range(ProblemData.TrainingPartition.Start, ProblemData.TrainingPartition.End - ProblemData.TrainingPartition.Start);
118        var estimatedValuesEnumerators = (from model in Model.Models
119                                          select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() })
120                                         .ToList();
121        var rowsEnumerator = rows.GetEnumerator();
122        while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
123          int currentRow = rowsEnumerator.Current;
124
125          var selectedEnumerators = from pair in estimatedValuesEnumerators
126                                    where trainingPartitions == null || !trainingPartitions.ContainsKey(pair.Model) ||
127                                         (trainingPartitions[pair.Model].Start <= currentRow && currentRow < trainingPartitions[pair.Model].End)
128                                    select pair.EstimatedValuesEnumerator;
129          yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
130        }
131      }
132    }
133
134    public override IEnumerable<double> EstimatedTestValues {
135      get {
136        var estimatedValuesEnumerators = (from model in Model.Models
137                                          select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndizes).GetEnumerator() })
138                                         .ToList();
139        var rowsEnumerator = ProblemData.TestIndizes.GetEnumerator();
140        while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
141          int currentRow = rowsEnumerator.Current;
142
143          var selectedEnumerators = from pair in estimatedValuesEnumerators
144                                    where testPartitions == null || !testPartitions.ContainsKey(pair.Model) ||
145                                      (testPartitions[pair.Model].Start <= currentRow && currentRow < testPartitions[pair.Model].End)
146                                    select pair.EstimatedValuesEnumerator;
147
148          yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
149        }
150      }
151    }
152
153    public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
154      return from xs in GetEstimatedValueVectors(ProblemData.Dataset, rows)
155             select AggregateEstimatedValues(xs);
156    }
157
158    public IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(Dataset dataset, IEnumerable<int> rows) {
159      var estimatedValuesEnumerators = (from model in Model.Models
160                                        select model.GetEstimatedValues(dataset, rows).GetEnumerator())
161                                       .ToList();
162
163      while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
164        yield return from enumerator in estimatedValuesEnumerators
165                     select enumerator.Current;
166      }
167    }
168
169    private double AggregateEstimatedValues(IEnumerable<double> estimatedValues) {
170      return estimatedValues.Average();
171    }
172
173    //[Storable]
174    //private string name;
175    //public string Name {
176    //  get {
177    //    return name;
178    //  }
179    //  set {
180    //    if (value != null && value != name) {
181    //      var cancelEventArgs = new CancelEventArgs<string>(value);
182    //      OnNameChanging(cancelEventArgs);
183    //      if (cancelEventArgs.Cancel == false) {
184    //        name = value;
185    //        OnNamedChanged(EventArgs.Empty);
186    //      }
187    //    }
188    //  }
189    //}
190
191    //public bool CanChangeName {
192    //  get { return true; }
193    //}
194
195    //[Storable]
196    //private string description;
197    //public string Description {
198    //  get {
199    //    return description;
200    //  }
201    //  set {
202    //    if (value != null && value != description) {
203    //      description = value;
204    //      OnDescriptionChanged(EventArgs.Empty);
205    //    }
206    //  }
207    //}
208
209    //public bool CanChangeDescription {
210    //  get { return true; }
211    //}
212
213    //#region events
214    //public event EventHandler<CancelEventArgs<string>> NameChanging;
215    //private void OnNameChanging(CancelEventArgs<string> cancelEventArgs) {
216    //  var listener = NameChanging;
217    //  if (listener != null) listener(this, cancelEventArgs);
218    //}
219
220    //public event EventHandler NameChanged;
221    //private void OnNamedChanged(EventArgs e) {
222    //  var listener = NameChanged;
223    //  if (listener != null) listener(this, e);
224    //}
225
226    //public event EventHandler DescriptionChanged;
227    //private void OnDescriptionChanged(EventArgs e) {
228    //  var listener = DescriptionChanged;
229    //  if (listener != null) listener(this, e);
230    //}
231    // #endregion
232  }
233}
Note: See TracBrowser for help on using the repository browser.