[5816] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 27 | using System;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents regression solutions that contain an ensemble of multiple regression models
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
| 35 | [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")]
|
---|
| 36 | // [Creatable("Data Analysis")]
|
---|
| 37 | public class RegressionEnsembleSolution : RegressionSolution, IRegressionEnsembleSolution {
|
---|
| 38 | public new IRegressionEnsembleModel Model {
|
---|
| 39 | get { return (IRegressionEnsembleModel)base.Model; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | [Storable]
|
---|
| 43 | private Dictionary<IRegressionModel, IntRange> trainingPartitions;
|
---|
| 44 | [Storable]
|
---|
| 45 | private Dictionary<IRegressionModel, IntRange> testPartitions;
|
---|
| 46 |
|
---|
| 47 | [StorableConstructor]
|
---|
| 48 | protected RegressionEnsembleSolution(bool deserializing) : base(deserializing) { }
|
---|
| 49 | protected RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner)
|
---|
| 50 | : base(original, cloner) {
|
---|
| 51 | }
|
---|
| 52 | public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData)
|
---|
| 53 | : base(new RegressionEnsembleModel(models), problemData) {
|
---|
| 54 | trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 55 | testPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 56 | foreach (var model in models) {
|
---|
| 57 | trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone();
|
---|
| 58 | testPartitions[model] = (IntRange)problemData.TestPartition.Clone();
|
---|
| 59 | }
|
---|
| 60 | RecalculateResults();
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
|
---|
| 64 | : base(new RegressionEnsembleModel(models), problemData) {
|
---|
| 65 | this.trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 66 | this.testPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 67 | var modelEnumerator = models.GetEnumerator();
|
---|
| 68 | var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
|
---|
| 69 | var testPartitionEnumerator = testPartitions.GetEnumerator();
|
---|
| 70 | while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
|
---|
| 71 | this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone();
|
---|
| 72 | this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone();
|
---|
| 73 | }
|
---|
| 74 | if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
|
---|
| 75 | throw new ArgumentException();
|
---|
| 76 | }
|
---|
[6184] | 77 |
|
---|
| 78 | RecalculateResults();
|
---|
[5816] | 79 | }
|
---|
| 80 |
|
---|
[6184] | 81 | private void RecalculateResults() {
|
---|
| 82 | double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
|
---|
| 83 | var trainingIndizes = Enumerable.Range(ProblemData.TrainingPartition.Start,
|
---|
| 84 | ProblemData.TrainingPartition.End - ProblemData.TrainingPartition.Start);
|
---|
| 85 | IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, trainingIndizes);
|
---|
| 86 | double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
|
---|
| 87 | IEnumerable<double> originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
|
---|
| 88 |
|
---|
| 89 | OnlineCalculatorError errorState;
|
---|
| 90 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
|
---|
| 91 | TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
| 92 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
|
---|
| 93 | TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
| 94 |
|
---|
| 95 | double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
|
---|
| 96 | TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
|
---|
| 97 | double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
|
---|
| 98 | TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
|
---|
| 99 |
|
---|
| 100 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
|
---|
| 101 | TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
| 102 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
|
---|
| 103 | TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
| 104 |
|
---|
| 105 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
|
---|
| 106 | TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
| 107 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
|
---|
| 108 | TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
[5816] | 111 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 112 | return new RegressionEnsembleSolution(this, cloner);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
| 116 | get {
|
---|
[6184] | 117 | var rows = Enumerable.Range(ProblemData.TrainingPartition.Start, ProblemData.TrainingPartition.End - ProblemData.TrainingPartition.Start);
|
---|
[5816] | 118 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
[6184] | 119 | select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() })
|
---|
[5816] | 120 | .ToList();
|
---|
[6184] | 121 | var rowsEnumerator = rows.GetEnumerator();
|
---|
| 122 | while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
|
---|
[5816] | 123 | int currentRow = rowsEnumerator.Current;
|
---|
| 124 |
|
---|
| 125 | var selectedEnumerators = from pair in estimatedValuesEnumerators
|
---|
| 126 | where trainingPartitions == null || !trainingPartitions.ContainsKey(pair.Model) ||
|
---|
[6184] | 127 | (trainingPartitions[pair.Model].Start <= currentRow && currentRow < trainingPartitions[pair.Model].End)
|
---|
[5816] | 128 | select pair.EstimatedValuesEnumerator;
|
---|
| 129 | yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
|
---|
| 130 | }
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | public override IEnumerable<double> EstimatedTestValues {
|
---|
| 135 | get {
|
---|
| 136 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 137 | select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndizes).GetEnumerator() })
|
---|
| 138 | .ToList();
|
---|
| 139 | var rowsEnumerator = ProblemData.TestIndizes.GetEnumerator();
|
---|
[6184] | 140 | while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
|
---|
[5816] | 141 | int currentRow = rowsEnumerator.Current;
|
---|
| 142 |
|
---|
| 143 | var selectedEnumerators = from pair in estimatedValuesEnumerators
|
---|
| 144 | where testPartitions == null || !testPartitions.ContainsKey(pair.Model) ||
|
---|
[6184] | 145 | (testPartitions[pair.Model].Start <= currentRow && currentRow < testPartitions[pair.Model].End)
|
---|
[5816] | 146 | select pair.EstimatedValuesEnumerator;
|
---|
| 147 |
|
---|
| 148 | yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
| 154 | return from xs in GetEstimatedValueVectors(ProblemData.Dataset, rows)
|
---|
| 155 | select AggregateEstimatedValues(xs);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | public IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 159 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 160 | select model.GetEstimatedValues(dataset, rows).GetEnumerator())
|
---|
| 161 | .ToList();
|
---|
| 162 |
|
---|
| 163 | while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
|
---|
| 164 | yield return from enumerator in estimatedValuesEnumerators
|
---|
| 165 | select enumerator.Current;
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | private double AggregateEstimatedValues(IEnumerable<double> estimatedValues) {
|
---|
| 170 | return estimatedValues.Average();
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | //[Storable]
|
---|
| 174 | //private string name;
|
---|
| 175 | //public string Name {
|
---|
| 176 | // get {
|
---|
| 177 | // return name;
|
---|
| 178 | // }
|
---|
| 179 | // set {
|
---|
| 180 | // if (value != null && value != name) {
|
---|
| 181 | // var cancelEventArgs = new CancelEventArgs<string>(value);
|
---|
| 182 | // OnNameChanging(cancelEventArgs);
|
---|
| 183 | // if (cancelEventArgs.Cancel == false) {
|
---|
| 184 | // name = value;
|
---|
| 185 | // OnNamedChanged(EventArgs.Empty);
|
---|
| 186 | // }
|
---|
| 187 | // }
|
---|
| 188 | // }
|
---|
| 189 | //}
|
---|
| 190 |
|
---|
| 191 | //public bool CanChangeName {
|
---|
| 192 | // get { return true; }
|
---|
| 193 | //}
|
---|
| 194 |
|
---|
| 195 | //[Storable]
|
---|
| 196 | //private string description;
|
---|
| 197 | //public string Description {
|
---|
| 198 | // get {
|
---|
| 199 | // return description;
|
---|
| 200 | // }
|
---|
| 201 | // set {
|
---|
| 202 | // if (value != null && value != description) {
|
---|
| 203 | // description = value;
|
---|
| 204 | // OnDescriptionChanged(EventArgs.Empty);
|
---|
| 205 | // }
|
---|
| 206 | // }
|
---|
| 207 | //}
|
---|
| 208 |
|
---|
| 209 | //public bool CanChangeDescription {
|
---|
| 210 | // get { return true; }
|
---|
| 211 | //}
|
---|
| 212 |
|
---|
| 213 | //#region events
|
---|
| 214 | //public event EventHandler<CancelEventArgs<string>> NameChanging;
|
---|
| 215 | //private void OnNameChanging(CancelEventArgs<string> cancelEventArgs) {
|
---|
| 216 | // var listener = NameChanging;
|
---|
| 217 | // if (listener != null) listener(this, cancelEventArgs);
|
---|
| 218 | //}
|
---|
| 219 |
|
---|
| 220 | //public event EventHandler NameChanged;
|
---|
| 221 | //private void OnNamedChanged(EventArgs e) {
|
---|
| 222 | // var listener = NameChanged;
|
---|
| 223 | // if (listener != null) listener(this, e);
|
---|
| 224 | //}
|
---|
| 225 |
|
---|
| 226 | //public event EventHandler DescriptionChanged;
|
---|
| 227 | //private void OnDescriptionChanged(EventArgs e) {
|
---|
| 228 | // var listener = DescriptionChanged;
|
---|
| 229 | // if (listener != null) listener(this, e);
|
---|
| 230 | //}
|
---|
| 231 | // #endregion
|
---|
| 232 | }
|
---|
| 233 | }
|
---|