1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a threshold calculator that maximizes the weighted accuracy of the classifcation model.
|
---|
32 | /// </summary>
|
---|
33 | [StorableClass]
|
---|
34 | [Item("AccuracyMaximizationThresholdCalculator", "Represents a threshold calculator that maximizes the weighted accuracy of the classifcation model.")]
|
---|
35 | public class AccuracyMaximizationThresholdCalculator : ThresholdCalculator {
|
---|
36 |
|
---|
37 | [StorableConstructor]
|
---|
38 | protected AccuracyMaximizationThresholdCalculator(bool deserializing) : base(deserializing) { }
|
---|
39 | protected AccuracyMaximizationThresholdCalculator(AccuracyMaximizationThresholdCalculator original, Cloner cloner)
|
---|
40 | : base(original, cloner) {
|
---|
41 | }
|
---|
42 | public AccuracyMaximizationThresholdCalculator()
|
---|
43 | : base() {
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
47 | return new AccuracyMaximizationThresholdCalculator(this, cloner);
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override void Calculate(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
|
---|
51 | AccuracyMaximizationThresholdCalculator.CalculateThresholds(problemData, estimatedValues, targetClassValues, out classValues, out thresholds);
|
---|
52 | }
|
---|
53 |
|
---|
54 | public static void CalculateThresholds(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
|
---|
55 | const int slices = 100;
|
---|
56 | const double minThresholdInc = 10e-5; // necessary to prevent infinite loop when maxEstimated - minEstimated is effectively zero (constant model)
|
---|
57 | List<double> estimatedValuesList = estimatedValues.ToList();
|
---|
58 | double maxEstimatedValue = estimatedValuesList.Max();
|
---|
59 | double minEstimatedValue = estimatedValuesList.Min();
|
---|
60 | double thresholdIncrement = Math.Max((maxEstimatedValue - minEstimatedValue) / slices, minThresholdInc);
|
---|
61 | var estimatedAndTargetValuePairs =
|
---|
62 | estimatedValuesList.Zip(targetClassValues, (x, y) => new { EstimatedValue = x, TargetClassValue = y })
|
---|
63 | .OrderBy(x => x.EstimatedValue).ToList();
|
---|
64 |
|
---|
65 | classValues = estimatedAndTargetValuePairs.GroupBy(x => x.TargetClassValue)
|
---|
66 | .Select(x => new { Median = x.Select(y => y.EstimatedValue).Median(), Class = x.Key })
|
---|
67 | .OrderBy(x => x.Median).Select(x => x.Class).ToArray();
|
---|
68 |
|
---|
69 | int nClasses = classValues.Length;
|
---|
70 | thresholds = new double[nClasses];
|
---|
71 | thresholds[0] = double.NegativeInfinity;
|
---|
72 |
|
---|
73 | // incrementally calculate accuracy of all possible thresholds
|
---|
74 | for (int i = 1; i < thresholds.Length; i++) {
|
---|
75 | double lowerThreshold = thresholds[i - 1];
|
---|
76 | double actualThreshold = Math.Max(lowerThreshold, minEstimatedValue);
|
---|
77 | double lowestBestThreshold = double.NaN;
|
---|
78 | double highestBestThreshold = double.NaN;
|
---|
79 | double bestClassificationScore = double.PositiveInfinity;
|
---|
80 | bool seriesOfEqualClassificationScores = false;
|
---|
81 |
|
---|
82 | while (actualThreshold < maxEstimatedValue) {
|
---|
83 | double classificationScore = 0.0;
|
---|
84 |
|
---|
85 | foreach (var pair in estimatedAndTargetValuePairs) {
|
---|
86 | //all positives
|
---|
87 | if (pair.TargetClassValue.IsAlmost(classValues[i - 1])) {
|
---|
88 | if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue <= actualThreshold)
|
---|
89 | //true positive
|
---|
90 | classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, pair.TargetClassValue);
|
---|
91 | else
|
---|
92 | //false negative
|
---|
93 | classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i]);
|
---|
94 | }
|
---|
95 | //all negatives
|
---|
96 | else {
|
---|
97 | //false positive
|
---|
98 | if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue <= actualThreshold)
|
---|
99 | classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i - 1]);
|
---|
100 | else if (pair.EstimatedValue <= lowerThreshold)
|
---|
101 | classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i - 2]);
|
---|
102 | else if (pair.EstimatedValue > actualThreshold) {
|
---|
103 | if (pair.TargetClassValue < classValues[i - 1]) //negative in wrong class, consider upper class
|
---|
104 | classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i]);
|
---|
105 | else //true negative, must be optimized by the other thresholds
|
---|
106 | classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, pair.TargetClassValue);
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | //new best classification score found
|
---|
112 | if (classificationScore < bestClassificationScore) {
|
---|
113 | bestClassificationScore = classificationScore;
|
---|
114 | lowestBestThreshold = actualThreshold;
|
---|
115 | highestBestThreshold = actualThreshold;
|
---|
116 | seriesOfEqualClassificationScores = true;
|
---|
117 | }
|
---|
118 | //equal classification scores => if seriesOfEqualClassifcationScores == true update highest threshold
|
---|
119 | else if (Math.Abs(classificationScore - bestClassificationScore) < double.Epsilon && seriesOfEqualClassificationScores)
|
---|
120 | highestBestThreshold = actualThreshold;
|
---|
121 | //worse classificatoin score found reset seriesOfEqualClassifcationScores
|
---|
122 | else seriesOfEqualClassificationScores = false;
|
---|
123 |
|
---|
124 | actualThreshold += thresholdIncrement;
|
---|
125 | }
|
---|
126 | //scale lowest thresholds and highest found optimal threshold according to the misclassification matrix
|
---|
127 | double falseNegativePenalty = problemData.GetClassificationPenalty(classValues[i], classValues[i - 1]);
|
---|
128 | double falsePositivePenalty = problemData.GetClassificationPenalty(classValues[i - 1], classValues[i]);
|
---|
129 | thresholds[i] = (lowestBestThreshold * falsePositivePenalty + highestBestThreshold * falseNegativePenalty) / (falseNegativePenalty + falsePositivePenalty);
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|