1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
32 | /// <summary>
|
---|
33 | /// Represents a classification solution that uses a discriminant function and classification thresholds.
|
---|
34 | /// </summary>
|
---|
35 | [StorableClass]
|
---|
36 | [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
|
---|
37 | public abstract class DiscriminantFunctionClassificationSolutionBase : ClassificationSolutionBase, IDiscriminantFunctionClassificationSolution {
|
---|
38 | private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
|
---|
39 | private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
|
---|
40 | private const string TrainingRSquaredResultName = "Pearson's R² (training)";
|
---|
41 | private const string TestRSquaredResultName = "Pearson's R² (test)";
|
---|
42 |
|
---|
43 | public new IDiscriminantFunctionClassificationModel Model {
|
---|
44 | get { return (IDiscriminantFunctionClassificationModel)base.Model; }
|
---|
45 | protected set {
|
---|
46 | if (value != null && value != Model) {
|
---|
47 | if (Model != null) {
|
---|
48 | Model.ThresholdsChanged -= new EventHandler(Model_ThresholdsChanged);
|
---|
49 | }
|
---|
50 | value.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
51 | base.Model = value;
|
---|
52 | }
|
---|
53 | }
|
---|
54 | }
|
---|
55 |
|
---|
56 | #region Results
|
---|
57 | public double TrainingMeanSquaredError {
|
---|
58 | get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
|
---|
59 | private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
|
---|
60 | }
|
---|
61 | public double TestMeanSquaredError {
|
---|
62 | get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
|
---|
63 | private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
|
---|
64 | }
|
---|
65 | public double TrainingRSquared {
|
---|
66 | get { return ((DoubleValue)this[TrainingRSquaredResultName].Value).Value; }
|
---|
67 | private set { ((DoubleValue)this[TrainingRSquaredResultName].Value).Value = value; }
|
---|
68 | }
|
---|
69 | public double TestRSquared {
|
---|
70 | get { return ((DoubleValue)this[TestRSquaredResultName].Value).Value; }
|
---|
71 | private set { ((DoubleValue)this[TestRSquaredResultName].Value).Value = value; }
|
---|
72 | }
|
---|
73 | #endregion
|
---|
74 |
|
---|
75 | [StorableConstructor]
|
---|
76 | protected DiscriminantFunctionClassificationSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
77 | protected DiscriminantFunctionClassificationSolutionBase(DiscriminantFunctionClassificationSolutionBase original, Cloner cloner)
|
---|
78 | : base(original, cloner) {
|
---|
79 | RegisterEventHandler();
|
---|
80 | }
|
---|
81 | protected DiscriminantFunctionClassificationSolutionBase(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
|
---|
82 | : base(model, problemData) {
|
---|
83 | Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
|
---|
84 | Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
|
---|
85 | Add(new Result(TrainingRSquaredResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
|
---|
86 | Add(new Result(TestRSquaredResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
|
---|
87 |
|
---|
88 | RegisterEventHandler();
|
---|
89 | }
|
---|
90 |
|
---|
91 | [StorableHook(HookType.AfterDeserialization)]
|
---|
92 | private void AfterDeserialization() {
|
---|
93 | RegisterEventHandler();
|
---|
94 | }
|
---|
95 |
|
---|
96 | protected override void OnModelChanged() {
|
---|
97 | DeregisterEventHandler();
|
---|
98 | SetAccuracyMaximizingThresholds();
|
---|
99 | RegisterEventHandler();
|
---|
100 | base.OnModelChanged();
|
---|
101 | }
|
---|
102 |
|
---|
103 | protected void CalculateRegressionResults() {
|
---|
104 | double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
|
---|
105 | double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
|
---|
106 | double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
|
---|
107 | double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
|
---|
108 |
|
---|
109 | OnlineCalculatorError errorState;
|
---|
110 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
111 | TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
112 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
113 | TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
114 |
|
---|
115 | double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
116 | TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
|
---|
117 | double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
118 | TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
|
---|
119 |
|
---|
120 | double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
121 | if (errorState != OnlineCalculatorError.None) trainingNormalizedGini = double.NaN;
|
---|
122 | double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
123 | if (errorState != OnlineCalculatorError.None) testNormalizedGini = double.NaN;
|
---|
124 |
|
---|
125 | TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
|
---|
126 | TestNormalizedGiniCoefficient = testNormalizedGini;
|
---|
127 | }
|
---|
128 |
|
---|
129 | private void RegisterEventHandler() {
|
---|
130 | Model.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
131 | }
|
---|
132 | private void DeregisterEventHandler() {
|
---|
133 | Model.ThresholdsChanged -= new EventHandler(Model_ThresholdsChanged);
|
---|
134 | }
|
---|
135 | private void Model_ThresholdsChanged(object sender, EventArgs e) {
|
---|
136 | OnModelThresholdsChanged(e);
|
---|
137 | }
|
---|
138 |
|
---|
139 | public void SetAccuracyMaximizingThresholds() {
|
---|
140 | double[] classValues;
|
---|
141 | double[] thresholds;
|
---|
142 | var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
143 | AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
144 |
|
---|
145 | Model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
146 | }
|
---|
147 |
|
---|
148 | public void SetClassDistibutionCutPointThresholds() {
|
---|
149 | double[] classValues;
|
---|
150 | double[] thresholds;
|
---|
151 | var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
152 | NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
153 |
|
---|
154 | Model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
155 | }
|
---|
156 |
|
---|
157 | protected virtual void OnModelThresholdsChanged(EventArgs e) {
|
---|
158 | CalculateResults();
|
---|
159 | }
|
---|
160 |
|
---|
161 | public abstract IEnumerable<double> EstimatedValues { get; }
|
---|
162 | public abstract IEnumerable<double> EstimatedTrainingValues { get; }
|
---|
163 | public abstract IEnumerable<double> EstimatedTestValues { get; }
|
---|
164 |
|
---|
165 | public abstract IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows);
|
---|
166 | }
|
---|
167 | }
|
---|