[5649] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[5777] | 22 | using System;
|
---|
[5649] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | /// <summary>
|
---|
| 31 | /// Represents a classification solution that uses a discriminant function and classification thresholds.
|
---|
| 32 | /// </summary>
|
---|
| 33 | [StorableClass]
|
---|
| 34 | [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
|
---|
| 35 | public class DiscriminantFunctionClassificationSolution : ClassificationSolution, IDiscriminantFunctionClassificationSolution {
|
---|
[5717] | 36 | public new IDiscriminantFunctionClassificationModel Model {
|
---|
| 37 | get { return (IDiscriminantFunctionClassificationModel)base.Model; }
|
---|
[5736] | 38 | protected set {
|
---|
| 39 | if (value != null && value != Model) {
|
---|
| 40 | if (Model != null) {
|
---|
| 41 | Model.ThresholdsChanged -= new EventHandler(Model_ThresholdsChanged);
|
---|
| 42 | }
|
---|
| 43 | value.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
| 44 | base.Model = value;
|
---|
| 45 | }
|
---|
| 46 | }
|
---|
[5717] | 47 | }
|
---|
| 48 |
|
---|
[5649] | 49 | [StorableConstructor]
|
---|
| 50 | protected DiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
| 51 | protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner)
|
---|
| 52 | : base(original, cloner) {
|
---|
[5736] | 53 | RegisterEventHandler();
|
---|
[5649] | 54 | }
|
---|
[5736] | 55 | public DiscriminantFunctionClassificationSolution(IRegressionModel model, IClassificationProblemData problemData)
|
---|
| 56 | : this(new DiscriminantFunctionClassificationModel(model), problemData) {
|
---|
[5649] | 57 | }
|
---|
| 58 | public DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
|
---|
| 59 | : base(model, problemData) {
|
---|
[5736] | 60 | RegisterEventHandler();
|
---|
| 61 | SetAccuracyMaximizingThresholds();
|
---|
[5649] | 62 | }
|
---|
| 63 |
|
---|
[5736] | 64 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 65 | private void AfterDeserialization() {
|
---|
| 66 | RegisterEventHandler();
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | private void RegisterEventHandler() {
|
---|
| 70 | Model.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
| 71 | }
|
---|
| 72 | private void Model_ThresholdsChanged(object sender, EventArgs e) {
|
---|
| 73 | OnModelThresholdsChanged(e);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public void SetAccuracyMaximizingThresholds() {
|
---|
| 77 | double[] classValues;
|
---|
| 78 | double[] thresholds;
|
---|
| 79 | var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
| 80 | AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
| 81 |
|
---|
| 82 | Model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | public void SetClassDistibutionCutPointThresholds() {
|
---|
| 86 | double[] classValues;
|
---|
| 87 | double[] thresholds;
|
---|
| 88 | var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
| 89 | NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
| 90 |
|
---|
| 91 | Model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | protected override void OnModelChanged(EventArgs e) {
|
---|
[5777] | 95 | base.OnModelChanged(e);
|
---|
[5736] | 96 | SetAccuracyMaximizingThresholds();
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | protected override void OnProblemDataChanged(EventArgs e) {
|
---|
| 100 | base.OnProblemDataChanged(e);
|
---|
| 101 | SetAccuracyMaximizingThresholds();
|
---|
| 102 | }
|
---|
| 103 | protected virtual void OnModelThresholdsChanged(EventArgs e) {
|
---|
| 104 | RecalculateResults();
|
---|
| 105 | }
|
---|
| 106 |
|
---|
[5649] | 107 | public IEnumerable<double> EstimatedValues {
|
---|
| 108 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | public IEnumerable<double> EstimatedTrainingValues {
|
---|
| 112 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | public IEnumerable<double> EstimatedTestValues {
|
---|
| 116 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | public IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
| 120 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | }
|
---|