[6589] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11171] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6589] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | public abstract class ClassificationSolutionBase : DataAnalysisSolution, IClassificationSolution {
|
---|
| 32 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
| 33 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
[6913] | 34 | private const string TrainingNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (training)";
|
---|
| 35 | private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)";
|
---|
[6589] | 36 |
|
---|
| 37 | public new IClassificationModel Model {
|
---|
| 38 | get { return (IClassificationModel)base.Model; }
|
---|
| 39 | protected set { base.Model = value; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public new IClassificationProblemData ProblemData {
|
---|
| 43 | get { return (IClassificationProblemData)base.ProblemData; }
|
---|
[6653] | 44 | set { base.ProblemData = value; }
|
---|
[6589] | 45 | }
|
---|
| 46 |
|
---|
| 47 | #region Results
|
---|
| 48 | public double TrainingAccuracy {
|
---|
| 49 | get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
|
---|
| 50 | private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
|
---|
| 51 | }
|
---|
| 52 | public double TestAccuracy {
|
---|
| 53 | get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
|
---|
| 54 | private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
|
---|
| 55 | }
|
---|
[6913] | 56 | public double TrainingNormalizedGiniCoefficient {
|
---|
| 57 | get { return ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value; }
|
---|
| 58 | protected set { ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value = value; }
|
---|
| 59 | }
|
---|
| 60 | public double TestNormalizedGiniCoefficient {
|
---|
| 61 | get { return ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value; }
|
---|
| 62 | protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; }
|
---|
| 63 | }
|
---|
[6589] | 64 | #endregion
|
---|
| 65 |
|
---|
| 66 | [StorableConstructor]
|
---|
| 67 | protected ClassificationSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
| 68 | protected ClassificationSolutionBase(ClassificationSolutionBase original, Cloner cloner)
|
---|
| 69 | : base(original, cloner) {
|
---|
| 70 | }
|
---|
| 71 | protected ClassificationSolutionBase(IClassificationModel model, IClassificationProblemData problemData)
|
---|
| 72 | : base(model, problemData) {
|
---|
| 73 | Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
| 74 | Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
[6913] | 75 | Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
|
---|
| 76 | Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
|
---|
[6589] | 77 | }
|
---|
| 78 |
|
---|
[7011] | 79 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 80 | private void AfterDeserialization() {
|
---|
| 81 | if (!this.ContainsKey(TrainingNormalizedGiniCoefficientResultName))
|
---|
| 82 | Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
|
---|
| 83 | if (!this.ContainsKey(TestNormalizedGiniCoefficientResultName))
|
---|
| 84 | Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
|
---|
| 85 | }
|
---|
| 86 |
|
---|
[8723] | 87 | protected void CalculateClassificationResults() {
|
---|
[6589] | 88 | double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
|
---|
[8139] | 89 | double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray();
|
---|
[6589] | 90 | double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
|
---|
[8139] | 91 | double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray();
|
---|
[6589] | 92 |
|
---|
| 93 | OnlineCalculatorError errorState;
|
---|
[6961] | 94 | double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
|
---|
[6589] | 95 | if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
|
---|
[6961] | 96 | double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
|
---|
[6589] | 97 | if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
|
---|
| 98 |
|
---|
| 99 | TrainingAccuracy = trainingAccuracy;
|
---|
| 100 | TestAccuracy = testAccuracy;
|
---|
[6913] | 101 |
|
---|
| 102 | double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
|
---|
| 103 | if (errorState != OnlineCalculatorError.None) trainingNormalizedGini = double.NaN;
|
---|
| 104 | double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
|
---|
| 105 | if (errorState != OnlineCalculatorError.None) testNormalizedGini = double.NaN;
|
---|
| 106 |
|
---|
| 107 | TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
|
---|
| 108 | TestNormalizedGiniCoefficient = testNormalizedGini;
|
---|
[6589] | 109 | }
|
---|
| 110 |
|
---|
| 111 | public abstract IEnumerable<double> EstimatedClassValues { get; }
|
---|
| 112 | public abstract IEnumerable<double> EstimatedTrainingClassValues { get; }
|
---|
| 113 | public abstract IEnumerable<double> EstimatedTestClassValues { get; }
|
---|
| 114 |
|
---|
| 115 | public abstract IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows);
|
---|
[8723] | 116 |
|
---|
| 117 | protected override void RecalculateResults() {
|
---|
| 118 | CalculateClassificationResults();
|
---|
| 119 | }
|
---|
[6589] | 120 | }
|
---|
| 121 | }
|
---|