Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationEnsembleSolution.cs @ 6583

Last change on this file since 6583 was 6574, checked in by mkommend, 13 years ago

#1579: Corrected typo in EnsembleSolution.

File size: 9.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27using HeuristicLab.Data;
28using System;
29
30namespace HeuristicLab.Problems.DataAnalysis {
31  /// <summary>
32  /// Represents classification solutions that contain an ensemble of multiple classification models
33  /// </summary>
34  [StorableClass]
35  [Item("Classification Ensemble Solution", "A classification solution that contains an ensemble of multiple classification models")]
36  // [Creatable("Data Analysis")]
37  public class ClassificationEnsembleSolution : ClassificationSolution, IClassificationEnsembleSolution {
38
39    public new IClassificationEnsembleModel Model {
40      set { base.Model = value; }
41      get { return (IClassificationEnsembleModel)base.Model; }
42    }
43
44    [Storable]
45    private Dictionary<IClassificationModel, IntRange> trainingPartitions;
46    [Storable]
47    private Dictionary<IClassificationModel, IntRange> testPartitions;
48
49
50    [StorableConstructor]
51    protected ClassificationEnsembleSolution(bool deserializing) : base(deserializing) { }
52    protected ClassificationEnsembleSolution(ClassificationEnsembleSolution original, Cloner cloner)
53      : base(original, cloner) {
54      trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
55      testPartitions = new Dictionary<IClassificationModel, IntRange>();
56      foreach (var pair in original.trainingPartitions) {
57        trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
58      }
59      foreach (var pair in original.testPartitions) {
60        testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
61      }
62      RecalculateResults();
63    }
64    public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData)
65      : base(new ClassificationEnsembleModel(models), new ClassificationEnsembleProblemData(problemData)) {
66      this.name = ItemName;
67      this.description = ItemDescription;
68      trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
69      testPartitions = new Dictionary<IClassificationModel, IntRange>();
70      foreach (var model in models) {
71        trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone();
72        testPartitions[model] = (IntRange)problemData.TestPartition.Clone();
73      }
74      RecalculateResults();
75    }
76
77    public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
78      : base(new ClassificationEnsembleModel(models), new ClassificationEnsembleProblemData(problemData)) {
79      this.trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
80      this.testPartitions = new Dictionary<IClassificationModel, IntRange>();
81      AddModelsAndParitions(models,
82        trainingPartitions,
83        testPartitions);
84      RecalculateResults();
85    }
86
87    public override IDeepCloneable Clone(Cloner cloner) {
88      return new ClassificationEnsembleSolution(this, cloner);
89    }
90
91    public override IEnumerable<double> EstimatedTrainingClassValues {
92      get {
93        var rows = ProblemData.TrainingIndizes;
94        var estimatedValuesEnumerators = (from model in Model.Models
95                                          select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() })
96                                         .ToList();
97        var rowsEnumerator = rows.GetEnumerator();
98        // aggregate to make sure that MoveNext is called for all enumerators
99        while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
100          int currentRow = rowsEnumerator.Current;
101
102          var selectedEnumerators = from pair in estimatedValuesEnumerators
103                                    where RowIsTrainingForModel(currentRow, pair.Model) && !RowIsTestForModel(currentRow, pair.Model)
104                                    select pair.EstimatedValuesEnumerator;
105          yield return AggregateEstimatedClassValues(selectedEnumerators.Select(x => x.Current));
106        }
107      }
108    }
109
110    public override IEnumerable<double> EstimatedTestClassValues {
111      get {
112        var rows = ProblemData.TestIndizes;
113        var estimatedValuesEnumerators = (from model in Model.Models
114                                          select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() })
115                                         .ToList();
116        var rowsEnumerator = ProblemData.TestIndizes.GetEnumerator();
117        // aggregate to make sure that MoveNext is called for all enumerators
118        while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
119          int currentRow = rowsEnumerator.Current;
120
121          var selectedEnumerators = from pair in estimatedValuesEnumerators
122                                    where RowIsTestForModel(currentRow, pair.Model)
123                                    select pair.EstimatedValuesEnumerator;
124
125          yield return AggregateEstimatedClassValues(selectedEnumerators.Select(x => x.Current));
126        }
127      }
128    }
129
130    private bool RowIsTrainingForModel(int currentRow, IClassificationModel model) {
131      return trainingPartitions == null || !trainingPartitions.ContainsKey(model) ||
132              (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End);
133    }
134
135    private bool RowIsTestForModel(int currentRow, IClassificationModel model) {
136      return testPartitions == null || !testPartitions.ContainsKey(model) ||
137              (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End);
138    }
139
140    public override IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
141      return from xs in GetEstimatedClassValueVectors(ProblemData.Dataset, rows)
142             select AggregateEstimatedClassValues(xs);
143    }
144
145    public IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(Dataset dataset, IEnumerable<int> rows) {
146      var estimatedValuesEnumerators = (from model in Model.Models
147                                        select model.GetEstimatedClassValues(dataset, rows).GetEnumerator())
148                                       .ToList();
149
150      while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
151        yield return from enumerator in estimatedValuesEnumerators
152                     select enumerator.Current;
153      }
154    }
155
156    private double AggregateEstimatedClassValues(IEnumerable<double> estimatedClassValues) {
157      return estimatedClassValues
158      .GroupBy(x => x)
159      .OrderBy(g => -g.Count())
160      .Select(g => g.Key)
161      .DefaultIfEmpty(double.NaN)
162      .First();
163    }
164
165    public void AddModelsAndPartitions(IEnumerable<IClassificationSolution> solutions) {
166      foreach (var solution in solutions) {
167        var ensembleSolution = solution as ClassificationEnsembleSolution;
168        if (ensembleSolution != null) {
169          var data = from m in ensembleSolution.Model.Models
170                     let train = ensembleSolution.trainingPartitions[m]
171                     let test = ensembleSolution.testPartitions[m]
172                     select new { m, train, test };
173
174          foreach (var d in data) {
175            Model.Add(d.m);
176            trainingPartitions[d.m] = (IntRange)d.train.Clone();
177            testPartitions[d.m] = (IntRange)d.test.Clone();
178          }
179        } else {
180          Model.Add(solution.Model);
181          trainingPartitions[solution.Model] = (IntRange)solution.ProblemData.TrainingPartition.Clone();
182          testPartitions[solution.Model] = (IntRange)solution.ProblemData.TestPartition.Clone();
183        }
184      }
185
186      RecalculateResults();
187    }
188
189    private void AddModelsAndParitions(IEnumerable<IClassificationModel> models, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions) {
190      var modelEnumerator = models.GetEnumerator();
191      var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
192      var testPartitionEnumerator = testPartitions.GetEnumerator();
193
194      while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
195        this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone();
196        this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone();
197      }
198      if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
199        throw new ArgumentException();
200      }
201    }
202  }
203}
Note: See TracBrowser for help on using the repository browser.