[5816] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5816] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6589] | 22 | using System;
|
---|
[5816] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[6613] | 25 | using HeuristicLab.Collections;
|
---|
[5816] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
[6589] | 28 | using HeuristicLab.Data;
|
---|
[5816] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Represents classification solutions that contain an ensemble of multiple classification models
|
---|
| 34 | /// </summary>
|
---|
| 35 | [StorableClass]
|
---|
| 36 | [Item("Classification Ensemble Solution", "A classification solution that contains an ensemble of multiple classification models")]
|
---|
[6666] | 37 | [Creatable("Data Analysis - Ensembles")]
|
---|
[6592] | 38 | public sealed class ClassificationEnsembleSolution : ClassificationSolution, IClassificationEnsembleSolution {
|
---|
[8167] | 39 | private readonly Dictionary<int, double> trainingEvaluationCache = new Dictionary<int, double>();
|
---|
| 40 | private readonly Dictionary<int, double> testEvaluationCache = new Dictionary<int, double>();
|
---|
[8153] | 41 |
|
---|
[6239] | 42 | public new IClassificationEnsembleModel Model {
|
---|
| 43 | get { return (IClassificationEnsembleModel)base.Model; }
|
---|
| 44 | }
|
---|
[6666] | 45 | public new ClassificationEnsembleProblemData ProblemData {
|
---|
| 46 | get { return (ClassificationEnsembleProblemData)base.ProblemData; }
|
---|
| 47 | set { base.ProblemData = value; }
|
---|
| 48 | }
|
---|
[6239] | 49 |
|
---|
[6613] | 50 | private readonly ItemCollection<IClassificationSolution> classificationSolutions;
|
---|
| 51 | public IItemCollection<IClassificationSolution> ClassificationSolutions {
|
---|
| 52 | get { return classificationSolutions; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
[5816] | 55 | [Storable]
|
---|
[6239] | 56 | private Dictionary<IClassificationModel, IntRange> trainingPartitions;
|
---|
| 57 | [Storable]
|
---|
| 58 | private Dictionary<IClassificationModel, IntRange> testPartitions;
|
---|
| 59 |
|
---|
[6613] | 60 | [StorableConstructor]
|
---|
| 61 | private ClassificationEnsembleSolution(bool deserializing)
|
---|
| 62 | : base(deserializing) {
|
---|
| 63 | classificationSolutions = new ItemCollection<IClassificationSolution>();
|
---|
| 64 | }
|
---|
| 65 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 66 | private void AfterDeserialization() {
|
---|
| 67 | foreach (var model in Model.Models) {
|
---|
| 68 | IClassificationProblemData problemData = (IClassificationProblemData)ProblemData.Clone();
|
---|
| 69 | problemData.TrainingPartition.Start = trainingPartitions[model].Start;
|
---|
| 70 | problemData.TrainingPartition.End = trainingPartitions[model].End;
|
---|
| 71 | problemData.TestPartition.Start = testPartitions[model].Start;
|
---|
| 72 | problemData.TestPartition.End = testPartitions[model].End;
|
---|
[6239] | 73 |
|
---|
[6613] | 74 | classificationSolutions.Add(model.CreateClassificationSolution(problemData));
|
---|
| 75 | }
|
---|
| 76 | RegisterClassificationSolutionsEventHandler();
|
---|
| 77 | }
|
---|
| 78 |
|
---|
[6592] | 79 | private ClassificationEnsembleSolution(ClassificationEnsembleSolution original, Cloner cloner)
|
---|
[5816] | 80 | : base(original, cloner) {
|
---|
[6239] | 81 | trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 82 | testPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
[6302] | 83 | foreach (var pair in original.trainingPartitions) {
|
---|
| 84 | trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
|
---|
[6239] | 85 | }
|
---|
[6302] | 86 | foreach (var pair in original.testPartitions) {
|
---|
| 87 | testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
|
---|
| 88 | }
|
---|
[6613] | 89 |
|
---|
[8174] | 90 | trainingEvaluationCache = new Dictionary<int, double>(original.ProblemData.TrainingIndices.Count());
|
---|
| 91 | testEvaluationCache = new Dictionary<int, double>(original.ProblemData.TestIndices.Count());
|
---|
| 92 |
|
---|
[6613] | 93 | classificationSolutions = cloner.Clone(original.classificationSolutions);
|
---|
| 94 | RegisterClassificationSolutionsEventHandler();
|
---|
[5816] | 95 | }
|
---|
[6613] | 96 |
|
---|
[6666] | 97 | public ClassificationEnsembleSolution()
|
---|
| 98 | : base(new ClassificationEnsembleModel(), ClassificationEnsembleProblemData.EmptyProblemData) {
|
---|
| 99 | trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 100 | testPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 101 | classificationSolutions = new ItemCollection<IClassificationSolution>();
|
---|
| 102 |
|
---|
| 103 | RegisterClassificationSolutionsEventHandler();
|
---|
| 104 | }
|
---|
| 105 |
|
---|
[8528] | 106 | public ClassificationEnsembleSolution(IClassificationProblemData problemData) :
|
---|
| 107 | this(Enumerable.Empty<IClassificationModel>(), problemData) { }
|
---|
| 108 |
|
---|
[6239] | 109 | public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData)
|
---|
[6613] | 110 | : this(models, problemData,
|
---|
| 111 | models.Select(m => (IntRange)problemData.TrainingPartition.Clone()),
|
---|
| 112 | models.Select(m => (IntRange)problemData.TestPartition.Clone())
|
---|
| 113 | ) { }
|
---|
[5816] | 114 |
|
---|
[6239] | 115 | public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
|
---|
[6613] | 116 | : base(new ClassificationEnsembleModel(Enumerable.Empty<IClassificationModel>()), new ClassificationEnsembleProblemData(problemData)) {
|
---|
[6239] | 117 | this.trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 118 | this.testPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
[6613] | 119 | this.classificationSolutions = new ItemCollection<IClassificationSolution>();
|
---|
| 120 |
|
---|
| 121 | List<IClassificationSolution> solutions = new List<IClassificationSolution>();
|
---|
| 122 | var modelEnumerator = models.GetEnumerator();
|
---|
| 123 | var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
|
---|
| 124 | var testPartitionEnumerator = testPartitions.GetEnumerator();
|
---|
| 125 |
|
---|
| 126 | while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
|
---|
| 127 | var p = (IClassificationProblemData)problemData.Clone();
|
---|
| 128 | p.TrainingPartition.Start = trainingPartitionEnumerator.Current.Start;
|
---|
| 129 | p.TrainingPartition.End = trainingPartitionEnumerator.Current.End;
|
---|
| 130 | p.TestPartition.Start = testPartitionEnumerator.Current.Start;
|
---|
| 131 | p.TestPartition.End = testPartitionEnumerator.Current.End;
|
---|
| 132 |
|
---|
| 133 | solutions.Add(modelEnumerator.Current.CreateClassificationSolution(p));
|
---|
| 134 | }
|
---|
| 135 | if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
|
---|
| 136 | throw new ArgumentException();
|
---|
| 137 | }
|
---|
| 138 |
|
---|
[8174] | 139 | trainingEvaluationCache = new Dictionary<int, double>(problemData.TrainingIndices.Count());
|
---|
| 140 | testEvaluationCache = new Dictionary<int, double>(problemData.TestIndices.Count());
|
---|
| 141 |
|
---|
[6613] | 142 | RegisterClassificationSolutionsEventHandler();
|
---|
| 143 | classificationSolutions.AddRange(solutions);
|
---|
[6239] | 144 | }
|
---|
| 145 |
|
---|
[5816] | 146 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 147 | return new ClassificationEnsembleSolution(this, cloner);
|
---|
| 148 | }
|
---|
[6613] | 149 | private void RegisterClassificationSolutionsEventHandler() {
|
---|
| 150 | classificationSolutions.ItemsAdded += new CollectionItemsChangedEventHandler<IClassificationSolution>(classificationSolutions_ItemsAdded);
|
---|
| 151 | classificationSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler<IClassificationSolution>(classificationSolutions_ItemsRemoved);
|
---|
| 152 | classificationSolutions.CollectionReset += new CollectionItemsChangedEventHandler<IClassificationSolution>(classificationSolutions_CollectionReset);
|
---|
| 153 | }
|
---|
[5816] | 154 |
|
---|
[6589] | 155 | protected override void RecalculateResults() {
|
---|
| 156 | CalculateResults();
|
---|
| 157 | }
|
---|
| 158 |
|
---|
[6613] | 159 | #region Evaluation
|
---|
[6239] | 160 | public override IEnumerable<double> EstimatedTrainingClassValues {
|
---|
| 161 | get {
|
---|
[8139] | 162 | var rows = ProblemData.TrainingIndices;
|
---|
[8167] | 163 | var rowsToEvaluate = rows.Except(trainingEvaluationCache.Keys);
|
---|
[8153] | 164 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
| 165 | var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, (r, m) => RowIsTrainingForModel(r, m) && !RowIsTestForModel(r, m)).GetEnumerator();
|
---|
[5816] | 166 |
|
---|
[8153] | 167 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
[8167] | 168 | trainingEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
[6239] | 169 | }
|
---|
[8153] | 170 |
|
---|
[8167] | 171 | return rows.Select(row => trainingEvaluationCache[row]);
|
---|
[6239] | 172 | }
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | public override IEnumerable<double> EstimatedTestClassValues {
|
---|
| 176 | get {
|
---|
[8139] | 177 | var rows = ProblemData.TestIndices;
|
---|
[8167] | 178 | var rowsToEvaluate = rows.Except(testEvaluationCache.Keys);
|
---|
[8153] | 179 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
| 180 | var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, RowIsTestForModel).GetEnumerator();
|
---|
[6239] | 181 |
|
---|
[8153] | 182 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
[8167] | 183 | testEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
[8153] | 184 | }
|
---|
[6239] | 185 |
|
---|
[8167] | 186 | return rows.Select(row => testEvaluationCache[row]);
|
---|
[6239] | 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
[8153] | 190 | private IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows, Func<int, IClassificationModel, bool> modelSelectionPredicate) {
|
---|
| 191 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 192 | select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() })
|
---|
| 193 | .ToList();
|
---|
| 194 | var rowsEnumerator = rows.GetEnumerator();
|
---|
| 195 | // aggregate to make sure that MoveNext is called for all enumerators
|
---|
| 196 | while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
|
---|
| 197 | int currentRow = rowsEnumerator.Current;
|
---|
| 198 |
|
---|
| 199 | var selectedEnumerators = from pair in estimatedValuesEnumerators
|
---|
| 200 | where modelSelectionPredicate(currentRow, pair.Model)
|
---|
| 201 | select pair.EstimatedValuesEnumerator;
|
---|
| 202 |
|
---|
| 203 | yield return AggregateEstimatedClassValues(selectedEnumerators.Select(x => x.Current));
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 |
|
---|
[6254] | 207 | private bool RowIsTrainingForModel(int currentRow, IClassificationModel model) {
|
---|
| 208 | return trainingPartitions == null || !trainingPartitions.ContainsKey(model) ||
|
---|
| 209 | (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End);
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | private bool RowIsTestForModel(int currentRow, IClassificationModel model) {
|
---|
| 213 | return testPartitions == null || !testPartitions.ContainsKey(model) ||
|
---|
| 214 | (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End);
|
---|
| 215 | }
|
---|
| 216 |
|
---|
[6239] | 217 | public override IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
|
---|
[8167] | 218 | var rowsToEvaluate = rows.Except(evaluationCache.Keys);
|
---|
[8153] | 219 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
| 220 | var valuesEnumerator = (from xs in GetEstimatedClassValueVectors(ProblemData.Dataset, rowsToEvaluate)
|
---|
| 221 | select AggregateEstimatedClassValues(xs))
|
---|
| 222 | .GetEnumerator();
|
---|
| 223 |
|
---|
| 224 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
[8167] | 225 | evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
[8153] | 226 | }
|
---|
| 227 |
|
---|
[8167] | 228 | return rows.Select(row => evaluationCache[row]);
|
---|
[6239] | 229 | }
|
---|
| 230 |
|
---|
[5816] | 231 | public IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(Dataset dataset, IEnumerable<int> rows) {
|
---|
[6982] | 232 | if (!Model.Models.Any()) yield break;
|
---|
[6239] | 233 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
[5816] | 234 | select model.GetEstimatedClassValues(dataset, rows).GetEnumerator())
|
---|
| 235 | .ToList();
|
---|
| 236 |
|
---|
| 237 | while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
|
---|
| 238 | yield return from enumerator in estimatedValuesEnumerators
|
---|
| 239 | select enumerator.Current;
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 |
|
---|
[6239] | 243 | private double AggregateEstimatedClassValues(IEnumerable<double> estimatedClassValues) {
|
---|
| 244 | return estimatedClassValues
|
---|
| 245 | .GroupBy(x => x)
|
---|
| 246 | .OrderBy(g => -g.Count())
|
---|
| 247 | .Select(g => g.Key)
|
---|
[6254] | 248 | .DefaultIfEmpty(double.NaN)
|
---|
[6239] | 249 | .First();
|
---|
[5816] | 250 | }
|
---|
[6613] | 251 | #endregion
|
---|
[6520] | 252 |
|
---|
[6666] | 253 | protected override void OnProblemDataChanged() {
|
---|
[8167] | 254 | trainingEvaluationCache.Clear();
|
---|
| 255 | testEvaluationCache.Clear();
|
---|
| 256 | evaluationCache.Clear();
|
---|
[8153] | 257 |
|
---|
[6666] | 258 | IClassificationProblemData problemData = new ClassificationProblemData(ProblemData.Dataset,
|
---|
| 259 | ProblemData.AllowedInputVariables,
|
---|
| 260 | ProblemData.TargetVariable);
|
---|
| 261 | problemData.TrainingPartition.Start = ProblemData.TrainingPartition.Start;
|
---|
| 262 | problemData.TrainingPartition.End = ProblemData.TrainingPartition.End;
|
---|
| 263 | problemData.TestPartition.Start = ProblemData.TestPartition.Start;
|
---|
| 264 | problemData.TestPartition.End = ProblemData.TestPartition.End;
|
---|
| 265 |
|
---|
| 266 | foreach (var solution in ClassificationSolutions) {
|
---|
| 267 | if (solution is ClassificationEnsembleSolution)
|
---|
| 268 | solution.ProblemData = ProblemData;
|
---|
| 269 | else
|
---|
| 270 | solution.ProblemData = problemData;
|
---|
| 271 | }
|
---|
| 272 | foreach (var trainingPartition in trainingPartitions.Values) {
|
---|
| 273 | trainingPartition.Start = ProblemData.TrainingPartition.Start;
|
---|
| 274 | trainingPartition.End = ProblemData.TrainingPartition.End;
|
---|
| 275 | }
|
---|
| 276 | foreach (var testPartition in testPartitions.Values) {
|
---|
| 277 | testPartition.Start = ProblemData.TestPartition.Start;
|
---|
| 278 | testPartition.End = ProblemData.TestPartition.End;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | base.OnProblemDataChanged();
|
---|
| 282 | }
|
---|
| 283 |
|
---|
[6613] | 284 | public void AddClassificationSolutions(IEnumerable<IClassificationSolution> solutions) {
|
---|
| 285 | classificationSolutions.AddRange(solutions);
|
---|
[8153] | 286 |
|
---|
[8167] | 287 | trainingEvaluationCache.Clear();
|
---|
| 288 | testEvaluationCache.Clear();
|
---|
| 289 | evaluationCache.Clear();
|
---|
[6613] | 290 | }
|
---|
| 291 | public void RemoveClassificationSolutions(IEnumerable<IClassificationSolution> solutions) {
|
---|
| 292 | classificationSolutions.RemoveRange(solutions);
|
---|
[8153] | 293 |
|
---|
[8167] | 294 | trainingEvaluationCache.Clear();
|
---|
| 295 | testEvaluationCache.Clear();
|
---|
| 296 | evaluationCache.Clear();
|
---|
[6613] | 297 | }
|
---|
[6520] | 298 |
|
---|
[6613] | 299 | private void classificationSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs<IClassificationSolution> e) {
|
---|
| 300 | foreach (var solution in e.Items) AddClassificationSolution(solution);
|
---|
[6520] | 301 | RecalculateResults();
|
---|
| 302 | }
|
---|
[6613] | 303 | private void classificationSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs<IClassificationSolution> e) {
|
---|
| 304 | foreach (var solution in e.Items) RemoveClassificationSolution(solution);
|
---|
| 305 | RecalculateResults();
|
---|
| 306 | }
|
---|
| 307 | private void classificationSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs<IClassificationSolution> e) {
|
---|
| 308 | foreach (var solution in e.OldItems) RemoveClassificationSolution(solution);
|
---|
| 309 | foreach (var solution in e.Items) AddClassificationSolution(solution);
|
---|
| 310 | RecalculateResults();
|
---|
| 311 | }
|
---|
[6520] | 312 |
|
---|
[6613] | 313 | private void AddClassificationSolution(IClassificationSolution solution) {
|
---|
| 314 | if (Model.Models.Contains(solution.Model)) throw new ArgumentException();
|
---|
| 315 | Model.Add(solution.Model);
|
---|
| 316 | trainingPartitions[solution.Model] = solution.ProblemData.TrainingPartition;
|
---|
| 317 | testPartitions[solution.Model] = solution.ProblemData.TestPartition;
|
---|
[8153] | 318 |
|
---|
[8167] | 319 | trainingEvaluationCache.Clear();
|
---|
| 320 | testEvaluationCache.Clear();
|
---|
| 321 | evaluationCache.Clear();
|
---|
[6613] | 322 | }
|
---|
[6520] | 323 |
|
---|
[6613] | 324 | private void RemoveClassificationSolution(IClassificationSolution solution) {
|
---|
| 325 | if (!Model.Models.Contains(solution.Model)) throw new ArgumentException();
|
---|
| 326 | Model.Remove(solution.Model);
|
---|
| 327 | trainingPartitions.Remove(solution.Model);
|
---|
| 328 | testPartitions.Remove(solution.Model);
|
---|
[8153] | 329 |
|
---|
[8167] | 330 | trainingEvaluationCache.Clear();
|
---|
| 331 | testEvaluationCache.Clear();
|
---|
| 332 | evaluationCache.Clear();
|
---|
[6520] | 333 | }
|
---|
[5816] | 334 | }
|
---|
| 335 | }
|
---|