[5816] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6589] | 22 | using System;
|
---|
[5816] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[6589] | 27 | using HeuristicLab.Data;
|
---|
[5816] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents classification solutions that contain an ensemble of multiple classification models
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
| 35 | [Item("Classification Ensemble Solution", "A classification solution that contains an ensemble of multiple classification models")]
|
---|
| 36 | // [Creatable("Data Analysis")]
|
---|
[6592] | 37 | public sealed class ClassificationEnsembleSolution : ClassificationSolution, IClassificationEnsembleSolution {
|
---|
[5816] | 38 |
|
---|
[6239] | 39 | public new IClassificationEnsembleModel Model {
|
---|
| 40 | set { base.Model = value; }
|
---|
| 41 | get { return (IClassificationEnsembleModel)base.Model; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
[5816] | 44 | [Storable]
|
---|
[6239] | 45 | private Dictionary<IClassificationModel, IntRange> trainingPartitions;
|
---|
| 46 | [Storable]
|
---|
| 47 | private Dictionary<IClassificationModel, IntRange> testPartitions;
|
---|
| 48 |
|
---|
| 49 |
|
---|
[5816] | 50 | [StorableConstructor]
|
---|
[6592] | 51 | private ClassificationEnsembleSolution(bool deserializing) : base(deserializing) { }
|
---|
| 52 | private ClassificationEnsembleSolution(ClassificationEnsembleSolution original, Cloner cloner)
|
---|
[5816] | 53 | : base(original, cloner) {
|
---|
[6239] | 54 | trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 55 | testPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
[6302] | 56 | foreach (var pair in original.trainingPartitions) {
|
---|
| 57 | trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
|
---|
[6239] | 58 | }
|
---|
[6302] | 59 | foreach (var pair in original.testPartitions) {
|
---|
| 60 | testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
|
---|
| 61 | }
|
---|
[6239] | 62 | RecalculateResults();
|
---|
[5816] | 63 | }
|
---|
[6239] | 64 | public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData)
|
---|
| 65 | : base(new ClassificationEnsembleModel(models), new ClassificationEnsembleProblemData(problemData)) {
|
---|
[5816] | 66 | this.name = ItemName;
|
---|
| 67 | this.description = ItemDescription;
|
---|
[6239] | 68 | trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 69 | testPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 70 | foreach (var model in models) {
|
---|
| 71 | trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone();
|
---|
| 72 | testPartitions[model] = (IntRange)problemData.TestPartition.Clone();
|
---|
| 73 | }
|
---|
| 74 | RecalculateResults();
|
---|
[5816] | 75 | }
|
---|
| 76 |
|
---|
[6239] | 77 | public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
|
---|
| 78 | : base(new ClassificationEnsembleModel(models), new ClassificationEnsembleProblemData(problemData)) {
|
---|
| 79 | this.trainingPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
| 80 | this.testPartitions = new Dictionary<IClassificationModel, IntRange>();
|
---|
[6590] | 81 | AddModelsAndPartitions(models,
|
---|
[6520] | 82 | trainingPartitions,
|
---|
| 83 | testPartitions);
|
---|
[6239] | 84 | RecalculateResults();
|
---|
| 85 | }
|
---|
| 86 |
|
---|
[5816] | 87 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 88 | return new ClassificationEnsembleSolution(this, cloner);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
[6589] | 91 | protected override void RecalculateResults() {
|
---|
| 92 | CalculateResults();
|
---|
| 93 | }
|
---|
| 94 |
|
---|
[6239] | 95 | public override IEnumerable<double> EstimatedTrainingClassValues {
|
---|
| 96 | get {
|
---|
| 97 | var rows = ProblemData.TrainingIndizes;
|
---|
| 98 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 99 | select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() })
|
---|
| 100 | .ToList();
|
---|
| 101 | var rowsEnumerator = rows.GetEnumerator();
|
---|
| 102 | // aggregate to make sure that MoveNext is called for all enumerators
|
---|
| 103 | while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
|
---|
| 104 | int currentRow = rowsEnumerator.Current;
|
---|
[5816] | 105 |
|
---|
[6239] | 106 | var selectedEnumerators = from pair in estimatedValuesEnumerators
|
---|
[6254] | 107 | where RowIsTrainingForModel(currentRow, pair.Model) && !RowIsTestForModel(currentRow, pair.Model)
|
---|
[6239] | 108 | select pair.EstimatedValuesEnumerator;
|
---|
| 109 | yield return AggregateEstimatedClassValues(selectedEnumerators.Select(x => x.Current));
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | public override IEnumerable<double> EstimatedTestClassValues {
|
---|
| 115 | get {
|
---|
| 116 | var rows = ProblemData.TestIndizes;
|
---|
| 117 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 118 | select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() })
|
---|
| 119 | .ToList();
|
---|
| 120 | var rowsEnumerator = ProblemData.TestIndizes.GetEnumerator();
|
---|
| 121 | // aggregate to make sure that MoveNext is called for all enumerators
|
---|
| 122 | while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
|
---|
| 123 | int currentRow = rowsEnumerator.Current;
|
---|
| 124 |
|
---|
| 125 | var selectedEnumerators = from pair in estimatedValuesEnumerators
|
---|
[6254] | 126 | where RowIsTestForModel(currentRow, pair.Model)
|
---|
[6239] | 127 | select pair.EstimatedValuesEnumerator;
|
---|
| 128 |
|
---|
| 129 | yield return AggregateEstimatedClassValues(selectedEnumerators.Select(x => x.Current));
|
---|
| 130 | }
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 |
|
---|
[6254] | 134 | private bool RowIsTrainingForModel(int currentRow, IClassificationModel model) {
|
---|
| 135 | return trainingPartitions == null || !trainingPartitions.ContainsKey(model) ||
|
---|
| 136 | (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | private bool RowIsTestForModel(int currentRow, IClassificationModel model) {
|
---|
| 140 | return testPartitions == null || !testPartitions.ContainsKey(model) ||
|
---|
| 141 | (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
[6239] | 144 | public override IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
|
---|
| 145 | return from xs in GetEstimatedClassValueVectors(ProblemData.Dataset, rows)
|
---|
| 146 | select AggregateEstimatedClassValues(xs);
|
---|
| 147 | }
|
---|
| 148 |
|
---|
[5816] | 149 | public IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(Dataset dataset, IEnumerable<int> rows) {
|
---|
[6239] | 150 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
[5816] | 151 | select model.GetEstimatedClassValues(dataset, rows).GetEnumerator())
|
---|
| 152 | .ToList();
|
---|
| 153 |
|
---|
| 154 | while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
|
---|
| 155 | yield return from enumerator in estimatedValuesEnumerators
|
---|
| 156 | select enumerator.Current;
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 |
|
---|
[6239] | 160 | private double AggregateEstimatedClassValues(IEnumerable<double> estimatedClassValues) {
|
---|
| 161 | return estimatedClassValues
|
---|
| 162 | .GroupBy(x => x)
|
---|
| 163 | .OrderBy(g => -g.Count())
|
---|
| 164 | .Select(g => g.Key)
|
---|
[6254] | 165 | .DefaultIfEmpty(double.NaN)
|
---|
[6239] | 166 | .First();
|
---|
[5816] | 167 | }
|
---|
[6520] | 168 |
|
---|
[6574] | 169 | public void AddModelsAndPartitions(IEnumerable<IClassificationSolution> solutions) {
|
---|
[6520] | 170 | foreach (var solution in solutions) {
|
---|
| 171 | var ensembleSolution = solution as ClassificationEnsembleSolution;
|
---|
| 172 | if (ensembleSolution != null) {
|
---|
| 173 | var data = from m in ensembleSolution.Model.Models
|
---|
| 174 | let train = ensembleSolution.trainingPartitions[m]
|
---|
| 175 | let test = ensembleSolution.testPartitions[m]
|
---|
| 176 | select new { m, train, test };
|
---|
| 177 |
|
---|
| 178 | foreach (var d in data) {
|
---|
| 179 | Model.Add(d.m);
|
---|
| 180 | trainingPartitions[d.m] = (IntRange)d.train.Clone();
|
---|
| 181 | testPartitions[d.m] = (IntRange)d.test.Clone();
|
---|
| 182 | }
|
---|
| 183 | } else {
|
---|
| 184 | Model.Add(solution.Model);
|
---|
| 185 | trainingPartitions[solution.Model] = (IntRange)solution.ProblemData.TrainingPartition.Clone();
|
---|
| 186 | testPartitions[solution.Model] = (IntRange)solution.ProblemData.TestPartition.Clone();
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | RecalculateResults();
|
---|
| 191 | }
|
---|
| 192 |
|
---|
[6590] | 193 | private void AddModelsAndPartitions(IEnumerable<IClassificationModel> models, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions) {
|
---|
[6520] | 194 | var modelEnumerator = models.GetEnumerator();
|
---|
| 195 | var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
|
---|
| 196 | var testPartitionEnumerator = testPartitions.GetEnumerator();
|
---|
| 197 |
|
---|
| 198 | while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
|
---|
| 199 | this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone();
|
---|
| 200 | this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone();
|
---|
| 201 | }
|
---|
| 202 | if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
|
---|
| 203 | throw new ArgumentException();
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
[5816] | 206 | }
|
---|
| 207 | }
|
---|