1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using System;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
34 | [Item("VariableFrequencyAnalyser", "Calculates the accumulated frequencies of variable-symbols over the whole population.")]
|
---|
35 | [StorableClass]
|
---|
36 | public abstract class VariableFrequencyAnalyser : SingleSuccessorOperator {
|
---|
37 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
38 | private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
|
---|
39 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
40 |
|
---|
41 | #region parameter properties
|
---|
42 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
43 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<ItemArray<SymbolicExpressionTree>> SymbolicExpressionTreeParameter {
|
---|
46 | get { return (ILookupParameter<ItemArray<SymbolicExpressionTree>>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<DoubleMatrix> VariableFrequenciesParameter {
|
---|
49 | get { return (ILookupParameter<DoubleMatrix>)Parameters[VariableFrequenciesParameterName]; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 | #region properties
|
---|
53 | public DataAnalysisProblemData DataAnalysisProblemData {
|
---|
54 | get { return DataAnalysisProblemDataParameter.ActualValue; }
|
---|
55 | }
|
---|
56 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTrees {
|
---|
57 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
58 | }
|
---|
59 | public DoubleMatrix VariableFrequencies {
|
---|
60 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
61 | set { VariableFrequenciesParameter.ActualValue = value; }
|
---|
62 | }
|
---|
63 | #endregion
|
---|
64 | public VariableFrequencyAnalyser()
|
---|
65 | : base() {
|
---|
66 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees that should be analyzed."));
|
---|
67 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The problem data on which the for which the symbolic expression tree is a solution."));
|
---|
68 | Parameters.Add(new LookupParameter<DoubleMatrix>(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over the whole population."));
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override IOperation Apply() {
|
---|
72 | var inputVariables = DataAnalysisProblemData.InputVariables.Select(x => x.Value);
|
---|
73 | if (VariableFrequencies == null) {
|
---|
74 | VariableFrequencies = new DoubleMatrix(0, 1, inputVariables);
|
---|
75 | }
|
---|
76 | ((IStringConvertibleMatrix)VariableFrequencies).Rows = VariableFrequencies.Rows + 1;
|
---|
77 | int lastRowIndex = VariableFrequencies.Rows - 1;
|
---|
78 | var columnNames = VariableFrequencies.ColumnNames.ToList();
|
---|
79 | foreach (var pair in CalculateVariableFrequencies(SymbolicExpressionTrees, inputVariables)) {
|
---|
80 | int columnIndex = columnNames.IndexOf(pair.Key);
|
---|
81 | VariableFrequencies[lastRowIndex, columnIndex] = pair.Value;
|
---|
82 | }
|
---|
83 | return null;
|
---|
84 | }
|
---|
85 |
|
---|
86 | public static IEnumerable<KeyValuePair<string, double>> CalculateVariableFrequencies(IEnumerable<SymbolicExpressionTree> trees, IEnumerable<string> inputVariables) {
|
---|
87 | int totalVariableReferences = 0;
|
---|
88 | Dictionary<string, double> variableReferencesSum = new Dictionary<string, double>();
|
---|
89 | foreach (var inputVariable in inputVariables)
|
---|
90 | variableReferencesSum[inputVariable] = 0.0;
|
---|
91 | foreach (var tree in trees) {
|
---|
92 | var variableReferences = GetVariableReferenceCount(tree, inputVariables);
|
---|
93 | foreach (var pair in variableReferences) {
|
---|
94 | variableReferencesSum[pair.Key] += pair.Value;
|
---|
95 | }
|
---|
96 | totalVariableReferences += GetTotalVariableReferencesCount(tree);
|
---|
97 | }
|
---|
98 | foreach (string inputVariable in inputVariables) {
|
---|
99 | double relFreq = variableReferencesSum[inputVariable] / (double)totalVariableReferences;
|
---|
100 | yield return new KeyValuePair<string, double>(inputVariable, relFreq);
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | private static int GetTotalVariableReferencesCount(SymbolicExpressionTree tree) {
|
---|
105 | return tree.IterateNodesPrefix().OfType<VariableTreeNode>().Count();
|
---|
106 | }
|
---|
107 |
|
---|
108 | private static IEnumerable<KeyValuePair<string, int>> GetVariableReferenceCount(SymbolicExpressionTree tree, IEnumerable<string> inputVariables) {
|
---|
109 | var groupedFuns = (from node in tree.IterateNodesPrefix().OfType<VariableTreeNode>()
|
---|
110 | select node.VariableName).GroupBy(x => x);
|
---|
111 |
|
---|
112 | foreach (var inputVariable in inputVariables) {
|
---|
113 | var matchingFuns = from g in groupedFuns
|
---|
114 | where g.Key == inputVariable
|
---|
115 | select g.Count();
|
---|
116 | if (matchingFuns.Count() == 0) yield return new KeyValuePair<string, int>(inputVariable, 0);
|
---|
117 | else {
|
---|
118 | yield return new KeyValuePair<string, int>(inputVariable, matchingFuns.Single());
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|