1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
29 | using System.Diagnostics;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
32 | /// <summary>
|
---|
33 | /// Simplistic simplifier for arithmetic expressions
|
---|
34 | /// Rules:
|
---|
35 | /// * Constants are always the last argument to any function
|
---|
36 | /// * f(c1, c2) => c3 (constant expression folding)
|
---|
37 | /// </summary>
|
---|
38 | public class SymbolicSimplifier {
|
---|
39 | private Addition addSymbol = new Addition();
|
---|
40 | private Multiplication mulSymbol = new Multiplication();
|
---|
41 | private Division divSymbol = new Division();
|
---|
42 | private Constant constSymbol = new Constant();
|
---|
43 | private Variable varSymbol = new Variable();
|
---|
44 |
|
---|
45 | public SymbolicExpressionTree Simplify(SymbolicExpressionTree originalTree) {
|
---|
46 | var clone = (SymbolicExpressionTreeNode)originalTree.Root.Clone();
|
---|
47 | // macro expand (initially no argument trees)
|
---|
48 | var macroExpandedTree = MacroExpand(clone, clone.SubTrees[0], new List<SymbolicExpressionTreeNode>());
|
---|
49 | return new SymbolicExpressionTree(GetSimplifiedTree(macroExpandedTree));
|
---|
50 | }
|
---|
51 |
|
---|
52 | // the argumentTrees list contains already expanded trees used as arguments for invocations
|
---|
53 | private SymbolicExpressionTreeNode MacroExpand(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode node, IList<SymbolicExpressionTreeNode> argumentTrees) {
|
---|
54 | List<SymbolicExpressionTreeNode> subtrees = new List<SymbolicExpressionTreeNode>(node.SubTrees);
|
---|
55 | while (node.SubTrees.Count > 0) node.RemoveSubTree(0);
|
---|
56 | if (node.Symbol is InvokeFunction) {
|
---|
57 | var invokeSym = node.Symbol as InvokeFunction;
|
---|
58 | var defunNode = FindFunctionDefinition(root, invokeSym.FunctionName);
|
---|
59 | var macroExpandedArguments = new List<SymbolicExpressionTreeNode>();
|
---|
60 | foreach (var subtree in subtrees) {
|
---|
61 | macroExpandedArguments.Add(MacroExpand(root, subtree, argumentTrees));
|
---|
62 | }
|
---|
63 | return MacroExpand(root, defunNode, macroExpandedArguments);
|
---|
64 | } else if (node.Symbol is Argument) {
|
---|
65 | var argSym = node.Symbol as Argument;
|
---|
66 | // return the correct argument sub-tree (already macro-expanded)
|
---|
67 | return (SymbolicExpressionTreeNode)argumentTrees[argSym.ArgumentIndex].Clone();
|
---|
68 | } else if (node.Symbol is StartSymbol) {
|
---|
69 | return MacroExpand(root, subtrees[0], argumentTrees);
|
---|
70 | } else {
|
---|
71 | // recursive application
|
---|
72 | foreach (var subtree in subtrees) {
|
---|
73 | node.AddSubTree(MacroExpand(root, subtree, argumentTrees));
|
---|
74 | }
|
---|
75 | return node;
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 | private SymbolicExpressionTreeNode FindFunctionDefinition(SymbolicExpressionTreeNode root, string functionName) {
|
---|
80 | foreach (var subtree in root.SubTrees.OfType<DefunTreeNode>()) {
|
---|
81 | if (subtree.FunctionName == functionName) return subtree.SubTrees[0];
|
---|
82 | }
|
---|
83 |
|
---|
84 | throw new ArgumentException("Definition of function " + functionName + " not found.");
|
---|
85 | }
|
---|
86 |
|
---|
87 | /// <summary>
|
---|
88 | /// Creates a new simplified tree
|
---|
89 | /// </summary>
|
---|
90 | /// <param name="original"></param>
|
---|
91 | /// <returns></returns>
|
---|
92 | public SymbolicExpressionTreeNode GetSimplifiedTree(SymbolicExpressionTreeNode original) {
|
---|
93 | if (IsConstant(original) || IsVariable(original)) {
|
---|
94 | return (SymbolicExpressionTreeNode)original.Clone();
|
---|
95 | } else if (IsAddition(original)) {
|
---|
96 | if (original.SubTrees.Count == 1) {
|
---|
97 | return GetSimplifiedTree(original.SubTrees[0]);
|
---|
98 | } else {
|
---|
99 | // simplify expression x0..xn
|
---|
100 | // make addition (x0..xn)
|
---|
101 | Trace.Assert(original.SubTrees.Count > 1);
|
---|
102 | return original.SubTrees
|
---|
103 | .Select(x => GetSimplifiedTree(x))
|
---|
104 | .Aggregate((a, b) => MakeAddition(a, b));
|
---|
105 | }
|
---|
106 | } else if (IsSubtraction(original)) {
|
---|
107 | if (original.SubTrees.Count == 1) {
|
---|
108 | return Negate(GetSimplifiedTree(original.SubTrees[0]));
|
---|
109 | } else {
|
---|
110 | // simplify expressions x0..xn
|
---|
111 | // make addition (x0,-x1..-xn)
|
---|
112 | Trace.Assert(original.SubTrees.Count > 1);
|
---|
113 | var simplifiedTrees = original.SubTrees.Select(x => GetSimplifiedTree(x));
|
---|
114 | return simplifiedTrees.Take(1)
|
---|
115 | .Concat(simplifiedTrees.Skip(1).Select(x => Negate(x)))
|
---|
116 | .Aggregate((a, b) => MakeAddition(a, b));
|
---|
117 | }
|
---|
118 | } else if (IsMultiplication(original)) {
|
---|
119 | if (original.SubTrees.Count == 1) {
|
---|
120 | return GetSimplifiedTree(original.SubTrees[0]);
|
---|
121 | } else {
|
---|
122 | Trace.Assert(original.SubTrees.Count > 1);
|
---|
123 | return original.SubTrees
|
---|
124 | .Select(x => GetSimplifiedTree(x))
|
---|
125 | .Aggregate((a, b) => MakeMultiplication(a, b));
|
---|
126 | }
|
---|
127 | } else if (IsDivision(original)) {
|
---|
128 | if (original.SubTrees.Count == 1) {
|
---|
129 | return Invert(GetSimplifiedTree(original.SubTrees[0]));
|
---|
130 | } else {
|
---|
131 | // simplify expressions x0..xn
|
---|
132 | // make multiplication (x0 * 1/(x1 * x1 * .. * xn))
|
---|
133 | Trace.Assert(original.SubTrees.Count > 1);
|
---|
134 | var simplifiedTrees = original.SubTrees.Select(x => GetSimplifiedTree(x));
|
---|
135 | return
|
---|
136 | MakeMultiplication(simplifiedTrees.First(), Invert(simplifiedTrees.Skip(1).Aggregate((a, b) => MakeMultiplication(a, b))));
|
---|
137 | }
|
---|
138 | } else if (IsAverage(original)) {
|
---|
139 | if (original.SubTrees.Count == 1) {
|
---|
140 | return GetSimplifiedTree(original.SubTrees[0]);
|
---|
141 | } else {
|
---|
142 | // simpliy expressions x0..xn
|
---|
143 | // make sum(x0..xn) / n
|
---|
144 | Trace.Assert(original.SubTrees.Count > 1);
|
---|
145 | var sum = original.SubTrees
|
---|
146 | .Select(x => GetSimplifiedTree(x))
|
---|
147 | .Aggregate((a, b) => MakeAddition(a, b));
|
---|
148 | return MakeDivision(sum, MakeConstant(original.SubTrees.Count));
|
---|
149 | }
|
---|
150 | } else {
|
---|
151 | // can't simplify this function but simplify all subtrees
|
---|
152 | // TODO evaluate the function if original is a constant expression
|
---|
153 | List<SymbolicExpressionTreeNode> subTrees = new List<SymbolicExpressionTreeNode>(original.SubTrees);
|
---|
154 | while (original.SubTrees.Count > 0) original.RemoveSubTree(0);
|
---|
155 | var clone = (SymbolicExpressionTreeNode)original.Clone();
|
---|
156 | foreach (var subTree in subTrees) {
|
---|
157 | clone.AddSubTree(GetSimplifiedTree(subTree));
|
---|
158 | original.AddSubTree(subTree);
|
---|
159 | }
|
---|
160 | return clone;
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | /// <summary>
|
---|
165 | /// x => x * -1
|
---|
166 | /// Doesn't create new trees and manipulates x
|
---|
167 | /// </summary>
|
---|
168 | /// <param name="x"></param>
|
---|
169 | /// <returns>-x</returns>
|
---|
170 | private SymbolicExpressionTreeNode Negate(SymbolicExpressionTreeNode x) {
|
---|
171 | if (IsConstant(x)) {
|
---|
172 | ((ConstantTreeNode)x).Value *= -1;
|
---|
173 | } else if (IsVariable(x)) {
|
---|
174 | var variableTree = (VariableTreeNode)x;
|
---|
175 | variableTree.Weight *= -1.0;
|
---|
176 | } else if (IsAddition(x)) {
|
---|
177 | // (x0 + x1 + .. + xn) * -1 => (-x0 + -x1 + .. + -xn)
|
---|
178 | foreach (var subTree in x.SubTrees) {
|
---|
179 | Negate(subTree);
|
---|
180 | }
|
---|
181 | } else if (IsMultiplication(x) || IsDivision(x)) {
|
---|
182 | // x0 * x1 * .. * xn * -1 => x0 * x1 * .. * -xn
|
---|
183 | Negate(x.SubTrees.Last()); // last is maybe a constant, prefer to negate the constant
|
---|
184 | } else {
|
---|
185 | // any other function
|
---|
186 | return MakeMultiplication(x, MakeConstant(-1));
|
---|
187 | }
|
---|
188 | return x;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /// <summary>
|
---|
192 | /// x => 1/x
|
---|
193 | /// Doesn't create new trees and manipulates x
|
---|
194 | /// </summary>
|
---|
195 | /// <param name="x"></param>
|
---|
196 | /// <returns></returns>
|
---|
197 | private SymbolicExpressionTreeNode Invert(SymbolicExpressionTreeNode x) {
|
---|
198 | if (IsConstant(x)) {
|
---|
199 | ((ConstantTreeNode)x).Value = 1.0 / ((ConstantTreeNode)x).Value;
|
---|
200 | } else {
|
---|
201 | // any other function
|
---|
202 | return MakeDivision(MakeConstant(1), x);
|
---|
203 | }
|
---|
204 | return x;
|
---|
205 | }
|
---|
206 |
|
---|
207 | private SymbolicExpressionTreeNode MakeDivision(SymbolicExpressionTreeNode a, SymbolicExpressionTreeNode b) {
|
---|
208 | if (IsConstant(a) && IsConstant(b)) {
|
---|
209 | return MakeConstant(((ConstantTreeNode)a).Value / ((ConstantTreeNode)b).Value);
|
---|
210 | } else if (IsVariable(a) && IsConstant(b)) {
|
---|
211 | var constB = ((ConstantTreeNode)b).Value;
|
---|
212 | ((VariableTreeNode)a).Weight /= constB;
|
---|
213 | return a;
|
---|
214 | } else {
|
---|
215 | var div = divSymbol.CreateTreeNode();
|
---|
216 | div.AddSubTree(a);
|
---|
217 | div.AddSubTree(b);
|
---|
218 | return div;
|
---|
219 | }
|
---|
220 | }
|
---|
221 |
|
---|
222 | private SymbolicExpressionTreeNode MakeAddition(SymbolicExpressionTreeNode a, SymbolicExpressionTreeNode b) {
|
---|
223 | if (IsConstant(a) && IsConstant(b)) {
|
---|
224 | // merge constants
|
---|
225 | ((ConstantTreeNode)a).Value += ((ConstantTreeNode)b).Value;
|
---|
226 | return a;
|
---|
227 | } else if (IsConstant(a)) {
|
---|
228 | // c + x => x + c
|
---|
229 | // b is not constant => make sure constant is on the right
|
---|
230 | return MakeAddition(b, a);
|
---|
231 | } else if (IsConstant(b) && ((ConstantTreeNode)b).Value.IsAlmost(0.0)) {
|
---|
232 | // x + 0 => x
|
---|
233 | return a;
|
---|
234 | } else if (IsAddition(a) && IsAddition(b)) {
|
---|
235 | // merge additions
|
---|
236 | var add = addSymbol.CreateTreeNode();
|
---|
237 | for (int i = 0; i < a.SubTrees.Count - 1; i++) add.AddSubTree(a.SubTrees[i]);
|
---|
238 | for (int i = 0; i < b.SubTrees.Count - 1; i++) add.AddSubTree(b.SubTrees[i]);
|
---|
239 | if (IsConstant(a.SubTrees.Last()) && IsConstant(b.SubTrees.Last())) {
|
---|
240 | add.AddSubTree(MakeAddition(a.SubTrees.Last(), b.SubTrees.Last()));
|
---|
241 | } else if (IsConstant(a.SubTrees.Last())) {
|
---|
242 | add.AddSubTree(b.SubTrees.Last());
|
---|
243 | add.AddSubTree(a.SubTrees.Last());
|
---|
244 | } else {
|
---|
245 | add.AddSubTree(a.SubTrees.Last());
|
---|
246 | add.AddSubTree(b.SubTrees.Last());
|
---|
247 | }
|
---|
248 | MergeVariables(add);
|
---|
249 | return add;
|
---|
250 | } else if (IsAddition(b)) {
|
---|
251 | return MakeAddition(b, a);
|
---|
252 | } else if (IsAddition(a) && IsConstant(b)) {
|
---|
253 | var add = addSymbol.CreateTreeNode();
|
---|
254 | for (int i = 0; i < a.SubTrees.Count - 1; i++) add.AddSubTree(a.SubTrees[i]);
|
---|
255 | if (IsConstant(a.SubTrees.Last()))
|
---|
256 | add.AddSubTree(MakeAddition(a.SubTrees.Last(), b));
|
---|
257 | else {
|
---|
258 | add.AddSubTree(a.SubTrees.Last());
|
---|
259 | add.AddSubTree(b);
|
---|
260 | }
|
---|
261 | return add;
|
---|
262 | } else if (IsAddition(a)) {
|
---|
263 | var add = addSymbol.CreateTreeNode();
|
---|
264 | add.AddSubTree(b);
|
---|
265 | foreach (var subTree in a.SubTrees) {
|
---|
266 | add.AddSubTree(subTree);
|
---|
267 | }
|
---|
268 | MergeVariables(add);
|
---|
269 | return add;
|
---|
270 | } else {
|
---|
271 | var add = addSymbol.CreateTreeNode();
|
---|
272 | add.AddSubTree(a);
|
---|
273 | add.AddSubTree(b);
|
---|
274 | MergeVariables(add);
|
---|
275 | return add;
|
---|
276 | }
|
---|
277 | }
|
---|
278 |
|
---|
279 | private void MergeVariables(SymbolicExpressionTreeNode add) {
|
---|
280 | var subtrees = new List<SymbolicExpressionTreeNode>(add.SubTrees);
|
---|
281 | while (add.SubTrees.Count > 0) add.RemoveSubTree(0);
|
---|
282 | var groupedVarNodes = from node in subtrees.OfType<VariableTreeNode>()
|
---|
283 | group node by node.VariableName into g
|
---|
284 | select g;
|
---|
285 | var unchangedSubTrees = subtrees.Where(t => !(t is VariableTreeNode));
|
---|
286 |
|
---|
287 | foreach (var variableNodeGroup in groupedVarNodes) {
|
---|
288 | var weightSum = variableNodeGroup.Select(t => t.Weight).Sum();
|
---|
289 | var representative = variableNodeGroup.First();
|
---|
290 | representative.Weight = weightSum;
|
---|
291 | add.AddSubTree(representative);
|
---|
292 | }
|
---|
293 | foreach (var unchangedSubtree in unchangedSubTrees)
|
---|
294 | add.AddSubTree(unchangedSubtree);
|
---|
295 | }
|
---|
296 |
|
---|
297 | private SymbolicExpressionTreeNode MakeMultiplication(SymbolicExpressionTreeNode a, SymbolicExpressionTreeNode b) {
|
---|
298 | if (IsConstant(a) && IsConstant(b)) {
|
---|
299 | ((ConstantTreeNode)a).Value *= ((ConstantTreeNode)b).Value;
|
---|
300 | return a;
|
---|
301 | } else if (IsConstant(a)) {
|
---|
302 | return MakeMultiplication(b, a);
|
---|
303 | } else if (IsConstant(b) && ((ConstantTreeNode)b).Value.IsAlmost(1.0)) {
|
---|
304 | return a;
|
---|
305 | } else if (IsConstant(b) && IsVariable(a)) {
|
---|
306 | ((VariableTreeNode)a).Weight *= ((ConstantTreeNode)b).Value;
|
---|
307 | return a;
|
---|
308 | } else if (IsConstant(b) && IsAddition(a)) {
|
---|
309 | return a.SubTrees.Select(x => MakeMultiplication(x, b)).Aggregate((c, d) => MakeAddition(c, d));
|
---|
310 | } else if(IsDivision(a) && IsDivision(b)) {
|
---|
311 | return MakeDivision(MakeMultiplication(a.SubTrees[0], b.SubTrees[0]), MakeMultiplication(a.SubTrees[1], b.SubTrees[1]));
|
---|
312 | } else if (IsDivision(a)) {
|
---|
313 | Trace.Assert(a.SubTrees.Count == 2);
|
---|
314 | return MakeDivision(MakeMultiplication(a.SubTrees[0], b), a.SubTrees[1]);
|
---|
315 | } else if (IsDivision(b)) {
|
---|
316 | Trace.Assert(b.SubTrees.Count == 2);
|
---|
317 | return MakeDivision(MakeMultiplication(b.SubTrees[0], a), b.SubTrees[1]);
|
---|
318 | } else if (IsMultiplication(a) && IsMultiplication(b)) {
|
---|
319 | var mul = mulSymbol.CreateTreeNode();
|
---|
320 | for (int i = 0; i < a.SubTrees.Count - 1; i++) mul.AddSubTree(a.SubTrees[i]);
|
---|
321 | for (int i = 0; i < b.SubTrees.Count - 1; i++) mul.AddSubTree(b.SubTrees[i]);
|
---|
322 | mul.AddSubTree(MakeMultiplication(a.SubTrees.Last(), b.SubTrees.Last()));
|
---|
323 | return mul;
|
---|
324 | } else if (IsMultiplication(a)) {
|
---|
325 | var mul = mulSymbol.CreateTreeNode();
|
---|
326 | for (int i = 0; i < a.SubTrees.Count - 1; i++) mul.AddSubTree(a.SubTrees[i]);
|
---|
327 | mul.AddSubTree(MakeMultiplication(a.SubTrees.Last(), b));
|
---|
328 | return mul;
|
---|
329 | } else if (IsMultiplication(b)) {
|
---|
330 | var mul = mulSymbol.CreateTreeNode();
|
---|
331 | for (int i = 0; i < b.SubTrees.Count - 1; i++) mul.AddSubTree(b.SubTrees[i]);
|
---|
332 | mul.AddSubTree(MakeMultiplication(b.SubTrees.Last(), a));
|
---|
333 | return mul;
|
---|
334 | } else {
|
---|
335 | var mul = mulSymbol.CreateTreeNode();
|
---|
336 | mul.SubTrees.Add(a);
|
---|
337 | mul.SubTrees.Add(b);
|
---|
338 | return mul;
|
---|
339 | }
|
---|
340 | }
|
---|
341 |
|
---|
342 | #region is symbol ?
|
---|
343 | private bool IsDivision(SymbolicExpressionTreeNode original) {
|
---|
344 | return original.Symbol is Division;
|
---|
345 | }
|
---|
346 |
|
---|
347 | private bool IsMultiplication(SymbolicExpressionTreeNode original) {
|
---|
348 | return original.Symbol is Multiplication;
|
---|
349 | }
|
---|
350 |
|
---|
351 | private bool IsSubtraction(SymbolicExpressionTreeNode original) {
|
---|
352 | return original.Symbol is Subtraction;
|
---|
353 | }
|
---|
354 |
|
---|
355 | private bool IsAddition(SymbolicExpressionTreeNode original) {
|
---|
356 | return original.Symbol is Addition;
|
---|
357 | }
|
---|
358 |
|
---|
359 | private bool IsVariable(SymbolicExpressionTreeNode original) {
|
---|
360 | return original.Symbol is Variable;
|
---|
361 | }
|
---|
362 |
|
---|
363 | private bool IsConstant(SymbolicExpressionTreeNode original) {
|
---|
364 | return original.Symbol is Constant;
|
---|
365 | }
|
---|
366 |
|
---|
367 | private bool IsAverage(SymbolicExpressionTreeNode original) {
|
---|
368 | return original.Symbol is Average;
|
---|
369 | }
|
---|
370 | #endregion
|
---|
371 |
|
---|
372 | private SymbolicExpressionTreeNode MakeConstant(double value) {
|
---|
373 | ConstantTreeNode constantTreeNode = (ConstantTreeNode)(constSymbol.CreateTreeNode());
|
---|
374 | constantTreeNode.Value = value;
|
---|
375 | return (SymbolicExpressionTreeNode)constantTreeNode;
|
---|
376 | }
|
---|
377 |
|
---|
378 | private SymbolicExpressionTreeNode MakeVariable(double weight, string name) {
|
---|
379 | var tree = (VariableTreeNode)varSymbol.CreateTreeNode();
|
---|
380 | tree.Weight = weight;
|
---|
381 | tree.VariableName = name;
|
---|
382 | return tree;
|
---|
383 | }
|
---|
384 | }
|
---|
385 | }
|
---|