Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.3/Symbolic/SimpleArithmeticExpressionInterpreter.cs @ 5223

Last change on this file since 5223 was 5223, checked in by mkommend, 13 years ago

Made SimpleArithmeticExpressionInterpreter thread safe (ticket #1333).

File size: 12.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Compiler;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
31
32namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
33  [StorableClass]
34  [Item("SimpleArithmeticExpressionInterpreter", "Interpreter for arithmetic symbolic expression trees including function calls.")]
35  public sealed class SimpleArithmeticExpressionInterpreter : NamedItem, ISymbolicExpressionTreeInterpreter {
36    private class OpCodes {
37      public const byte Add = 1;
38      public const byte Sub = 2;
39      public const byte Mul = 3;
40      public const byte Div = 4;
41
42      public const byte Sin = 5;
43      public const byte Cos = 6;
44      public const byte Tan = 7;
45
46      public const byte Log = 8;
47      public const byte Exp = 9;
48
49      public const byte IfThenElse = 10;
50
51      public const byte GT = 11;
52      public const byte LT = 12;
53
54      public const byte AND = 13;
55      public const byte OR = 14;
56      public const byte NOT = 15;
57
58
59      public const byte Average = 16;
60
61      public const byte Call = 17;
62
63      public const byte Variable = 18;
64      public const byte LagVariable = 19;
65      public const byte Constant = 20;
66      public const byte Arg = 21;
67    }
68
69    private Dictionary<Type, byte> symbolToOpcode = new Dictionary<Type, byte>() {
70      { typeof(Addition), OpCodes.Add },
71      { typeof(Subtraction), OpCodes.Sub },
72      { typeof(Multiplication), OpCodes.Mul },
73      { typeof(Division), OpCodes.Div },
74      { typeof(Sine), OpCodes.Sin },
75      { typeof(Cosine), OpCodes.Cos },
76      { typeof(Tangent), OpCodes.Tan },
77      { typeof(Logarithm), OpCodes.Log },
78      { typeof(Exponential), OpCodes.Exp },
79      { typeof(IfThenElse), OpCodes.IfThenElse },
80      { typeof(GreaterThan), OpCodes.GT },
81      { typeof(LessThan), OpCodes.LT },
82      { typeof(And), OpCodes.AND },
83      { typeof(Or), OpCodes.OR },
84      { typeof(Not), OpCodes.NOT},
85      { typeof(Average), OpCodes.Average},
86      { typeof(InvokeFunction), OpCodes.Call },
87      { typeof(HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable), OpCodes.Variable },
88      { typeof(LaggedVariable), OpCodes.LagVariable },
89      { typeof(Constant), OpCodes.Constant },
90      { typeof(Argument), OpCodes.Arg },
91    };
92    private const int ARGUMENT_STACK_SIZE = 1024;
93
94    public override bool CanChangeName {
95      get { return false; }
96    }
97    public override bool CanChangeDescription {
98      get { return false; }
99    }
100
101    [StorableConstructor]
102    private SimpleArithmeticExpressionInterpreter(bool deserializing) : base(deserializing) { }
103    private SimpleArithmeticExpressionInterpreter(SimpleArithmeticExpressionInterpreter original, Cloner cloner) : base(original, cloner) { }
104    public override IDeepCloneable Clone(Cloner cloner) {
105      return new SimpleArithmeticExpressionInterpreter(this, cloner);
106    }
107
108    public SimpleArithmeticExpressionInterpreter()
109      : base() {
110    }
111
112    public IEnumerable<double> GetSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows) {
113      var compiler = new SymbolicExpressionTreeCompiler();
114      Instruction[] code = compiler.Compile(tree, MapSymbolToOpCode);
115
116      for (int i = 0; i < code.Length; i++) {
117        Instruction instr = code[i];
118        if (instr.opCode == OpCodes.Variable) {
119          var variableTreeNode = instr.dynamicNode as VariableTreeNode;
120          instr.iArg0 = (ushort)dataset.GetVariableIndex(variableTreeNode.VariableName);
121          code[i] = instr;
122        } else if (instr.opCode == OpCodes.LagVariable) {
123          var variableTreeNode = instr.dynamicNode as LaggedVariableTreeNode;
124          instr.iArg0 = (ushort)dataset.GetVariableIndex(variableTreeNode.VariableName);
125          code[i] = instr;
126        }
127      }
128
129      double[] argumentStack = new double[ARGUMENT_STACK_SIZE];
130      foreach (var rowEnum in rows) {
131        int row = rowEnum;
132        int pc = 0;
133        int argStackPointer = 0;
134        yield return Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
135      }
136    }
137
138    private double Evaluate(Dataset dataset, ref int row, Instruction[] code, ref int pc, double[] argumentStack, ref int argStackPointer) {
139      Instruction currentInstr = code[pc++];
140      switch (currentInstr.opCode) {
141        case OpCodes.Add: {
142            double s = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
143            for (int i = 1; i < currentInstr.nArguments; i++) {
144              s += Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
145            }
146            return s;
147          }
148        case OpCodes.Sub: {
149            double s = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
150            for (int i = 1; i < currentInstr.nArguments; i++) {
151              s -= Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
152            }
153            if (currentInstr.nArguments == 1) s = -s;
154            return s;
155          }
156        case OpCodes.Mul: {
157            double p = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
158            for (int i = 1; i < currentInstr.nArguments; i++) {
159              p *= Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
160            }
161            return p;
162          }
163        case OpCodes.Div: {
164            double p = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
165            for (int i = 1; i < currentInstr.nArguments; i++) {
166              p /= Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
167            }
168            if (currentInstr.nArguments == 1) p = 1.0 / p;
169            return p;
170          }
171        case OpCodes.Average: {
172            double sum = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
173            for (int i = 1; i < currentInstr.nArguments; i++) {
174              sum += Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
175            }
176            return sum / currentInstr.nArguments;
177          }
178        case OpCodes.Cos: {
179            return Math.Cos(Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer));
180          }
181        case OpCodes.Sin: {
182            return Math.Sin(Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer));
183          }
184        case OpCodes.Tan: {
185            return Math.Tan(Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer));
186          }
187        case OpCodes.Exp: {
188            return Math.Exp(Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer));
189          }
190        case OpCodes.Log: {
191            return Math.Log(Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer));
192          }
193        case OpCodes.IfThenElse: {
194            double condition = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
195            double result;
196            if (condition > 0.0) {
197              result = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer); SkipBakedCode(code, ref pc);
198            } else {
199              SkipBakedCode(code, ref pc); result = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
200            }
201            return result;
202          }
203        case OpCodes.AND: {
204            double result = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
205            for (int i = 1; i < currentInstr.nArguments; i++) {
206              if (result <= 0.0) SkipBakedCode(code, ref pc);
207              else {
208                result = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
209              }
210            }
211            return result <= 0.0 ? -1.0 : 1.0;
212          }
213        case OpCodes.OR: {
214            double result = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
215            for (int i = 1; i < currentInstr.nArguments; i++) {
216              if (result > 0.0) SkipBakedCode(code, ref pc);
217              else {
218                result = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
219              }
220            }
221            return result > 0.0 ? 1.0 : -1.0;
222          }
223        case OpCodes.NOT: {
224            return -Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
225          }
226        case OpCodes.GT: {
227            double x = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
228            double y = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
229            if (x > y) return 1.0;
230            else return -1.0;
231          }
232        case OpCodes.LT: {
233            double x = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
234            double y = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
235            if (x < y) return 1.0;
236            else return -1.0;
237          }
238        case OpCodes.Call: {
239            // evaluate sub-trees
240            // push on argStack in reverse order
241            for (int i = 0; i < currentInstr.nArguments; i++) {
242              argumentStack[argStackPointer + currentInstr.nArguments - i] = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
243            }
244            argStackPointer += currentInstr.nArguments;
245
246            // save the pc
247            int nextPc = pc;
248            // set pc to start of function 
249            pc = currentInstr.iArg0;
250            // evaluate the function
251            double v = Evaluate(dataset, ref row, code, ref pc, argumentStack, ref argStackPointer);
252
253            // decrease the argument stack pointer by the number of arguments pushed
254            // to set the argStackPointer back to the original location
255            argStackPointer -= currentInstr.nArguments;
256
257            // restore the pc => evaluation will continue at point after my subtrees 
258            pc = nextPc;
259            return v;
260          }
261        case OpCodes.Arg: {
262            return argumentStack[argStackPointer - currentInstr.iArg0];
263          }
264        case OpCodes.Variable: {
265            var variableTreeNode = currentInstr.dynamicNode as VariableTreeNode;
266            return dataset[row, currentInstr.iArg0] * variableTreeNode.Weight;
267          }
268        case OpCodes.LagVariable: {
269            var laggedVariableTreeNode = currentInstr.dynamicNode as LaggedVariableTreeNode;
270            int actualRow = row + laggedVariableTreeNode.Lag;
271            if (actualRow < 0 || actualRow >= dataset.Rows) throw new ArgumentException("Out of range access to dataset row: " + row);
272            return dataset[actualRow, currentInstr.iArg0] * laggedVariableTreeNode.Weight;
273          }
274        case OpCodes.Constant: {
275            var constTreeNode = currentInstr.dynamicNode as ConstantTreeNode;
276            return constTreeNode.Value;
277          }
278        default: throw new NotSupportedException();
279      }
280    }
281
282    private byte MapSymbolToOpCode(SymbolicExpressionTreeNode treeNode) {
283      if (symbolToOpcode.ContainsKey(treeNode.Symbol.GetType()))
284        return symbolToOpcode[treeNode.Symbol.GetType()];
285      else
286        throw new NotSupportedException("Symbol: " + treeNode.Symbol);
287    }
288
289    // skips a whole branch
290    private void SkipBakedCode(Instruction[] code, ref int pc) {
291      int i = 1;
292      while (i > 0) {
293        i += code[pc++].nArguments;
294        i--;
295      }
296    }
297  }
298}
Note: See TracBrowser for help on using the repository browser.