1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Problems.DataAnalysis.SupportVectorMachine {
|
---|
26 | public class SupportVectorMachineUtil {
|
---|
27 | /// <summary>
|
---|
28 | /// Transforms <paramref name="problemData"/> into a data structure as needed by libSVM.
|
---|
29 | /// </summary>
|
---|
30 | /// <param name="problemData">The problem data to transform</param>
|
---|
31 | /// <param name="rowIndices">The rows of the dataset that should be contained in the resulting SVM-problem</param>
|
---|
32 | /// <returns>A problem data type that can be used to train a support vector machine.</returns>
|
---|
33 | public static SVM.Problem CreateSvmProblem(DataAnalysisProblemData problemData, IEnumerable<int> rowIndices) {
|
---|
34 | double[] targetVector =
|
---|
35 | problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, rowIndices)
|
---|
36 | .ToArray();
|
---|
37 |
|
---|
38 | SVM.Node[][] nodes = new SVM.Node[targetVector.Length][];
|
---|
39 | List<SVM.Node> tempRow;
|
---|
40 | int maxNodeIndex = 0;
|
---|
41 | int svmProblemRowIndex = 0;
|
---|
42 | foreach (int row in rowIndices) {
|
---|
43 | tempRow = new List<SVM.Node>();
|
---|
44 | foreach (var inputVariable in problemData.InputVariables.CheckedItems) {
|
---|
45 | int col = problemData.Dataset.GetVariableIndex(inputVariable.Value.Value);
|
---|
46 | double value = problemData.Dataset[row, col];
|
---|
47 | if (!double.IsNaN(value)) {
|
---|
48 | int nodeIndex = col + 1; // make sure the smallest nodeIndex is 1 (libSVM convention)
|
---|
49 | tempRow.Add(new SVM.Node(nodeIndex, value));
|
---|
50 | if (nodeIndex > maxNodeIndex) maxNodeIndex = nodeIndex;
|
---|
51 | }
|
---|
52 | }
|
---|
53 | nodes[svmProblemRowIndex++] = tempRow.OrderBy(x => x.Index).ToArray(); // make sure the values are sorted by node index
|
---|
54 | }
|
---|
55 |
|
---|
56 | return new SVM.Problem(targetVector.Length, targetVector, nodes, maxNodeIndex);
|
---|
57 | }
|
---|
58 | }
|
---|
59 | }
|
---|