Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis/3.3/Evaluators/SimpleVarianceAccountedForEvaluator.cs @ 5594

Last change on this file since 5594 was 5445, checked in by swagner, 14 years ago

Updated year of copyrights (#1406)

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
32  /// <summary>
33  /// The Variance Accounted For (VAF) function calculates is computed as
34  /// VAF(y,y') =  1 - var(y-y')/var(y)
35  /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
36  /// </summary>
37  public class SimpleVarianceAccountedForEvaluator : SimpleEvaluator {
38
39    public ILookupParameter<DoubleValue> VarianceAccountedForParameter {
40      get { return (ILookupParameter<DoubleValue>)Parameters["VarianceAccountedFor"]; }
41    }
42
43    [StorableConstructor]
44    protected SimpleVarianceAccountedForEvaluator(bool deserializing) : base(deserializing) { }
45    protected SimpleVarianceAccountedForEvaluator(SimpleVarianceAccountedForEvaluator original, Cloner cloner)
46      : base(original, cloner) {
47    }
48    public override IDeepCloneable Clone(Cloner cloner) {
49      return new SimpleVarianceAccountedForEvaluator(this, cloner);
50    }
51    public SimpleVarianceAccountedForEvaluator() {
52      Parameters.Add(new LookupParameter<DoubleValue>("VarianceAccountedFor", "The variance of the original values accounted for by the estimated values (VAF(y,y') = 1 - var(y-y') / var(y) )."));
53    }
54
55    protected override void Apply(DoubleMatrix values) {
56      var original = from i in Enumerable.Range(0, values.Rows)
57                     select values[i, ORIGINAL_INDEX];
58      var estimated = from i in Enumerable.Range(0, values.Rows)
59                      select values[i, ESTIMATION_INDEX];
60      VarianceAccountedForParameter.ActualValue = new DoubleValue(Calculate(original, estimated));
61    }
62
63    public static double Calculate(IEnumerable<double> original, IEnumerable<double> estimated) {
64      var originalEnumerator = original.GetEnumerator();
65      var estimatedEnumerator = estimated.GetEnumerator();
66      var errors = new List<double>();
67      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
68        double e = estimatedEnumerator.Current;
69        double o = originalEnumerator.Current;
70        if (!double.IsNaN(e) && !double.IsInfinity(e) &&
71          !double.IsNaN(o) && !double.IsInfinity(o)) {
72          errors.Add(o - e);
73        }
74      }
75      if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
76        throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
77      }
78
79      double errorsVariance = errors.Variance();
80      double originalsVariance = original.Variance();
81      if (originalsVariance.IsAlmost(0.0))
82        if (errorsVariance.IsAlmost(0.0)) {
83          return 1.0;
84        } else {
85          return double.MaxValue;
86        } else {
87        return 1.0 - errorsVariance / originalsVariance;
88      }
89    }
90  }
91}
Note: See TracBrowser for help on using the repository browser.