[3452] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[5445] | 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[3452] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[2379] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[4722] | 25 | using HeuristicLab.Common;
|
---|
[2379] | 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[3452] | 28 | using HeuristicLab.Parameters;
|
---|
[4722] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[2379] | 30 |
|
---|
[3452] | 31 | namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
|
---|
| 32 | public class SimpleNMSEEvaluator : SimpleEvaluator {
|
---|
[2379] | 33 |
|
---|
[3452] | 34 | public ILookupParameter<DoubleValue> NormalizedMeanSquaredErrorParameter {
|
---|
| 35 | get { return (ILookupParameter<DoubleValue>)Parameters["NormalizedMeanSquaredError"]; }
|
---|
[2379] | 36 | }
|
---|
[3452] | 37 |
|
---|
[4722] | 38 | [StorableConstructor]
|
---|
| 39 | protected SimpleNMSEEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 40 | protected SimpleNMSEEvaluator(SimpleNMSEEvaluator original, Cloner cloner)
|
---|
| 41 | : base(original, cloner) {
|
---|
| 42 | }
|
---|
| 43 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 44 | return new SimpleNMSEEvaluator(this, cloner);
|
---|
| 45 | }
|
---|
[3452] | 46 | public SimpleNMSEEvaluator() {
|
---|
| 47 | Parameters.Add(new LookupParameter<DoubleValue>("NormalizedMeanSquaredError", "The normalized mean squared error (divided by variance) of estimated values."));
|
---|
[2379] | 48 | }
|
---|
| 49 |
|
---|
[3452] | 50 | protected override void Apply(DoubleMatrix values) {
|
---|
| 51 | var original = from i in Enumerable.Range(0, values.Rows)
|
---|
| 52 | select values[i, ORIGINAL_INDEX];
|
---|
| 53 | var estimated = from i in Enumerable.Range(0, values.Rows)
|
---|
| 54 | select values[i, ESTIMATION_INDEX];
|
---|
| 55 |
|
---|
| 56 | NormalizedMeanSquaredErrorParameter.ActualValue = new DoubleValue(Calculate(original, estimated));
|
---|
[2379] | 57 | }
|
---|
[3452] | 58 |
|
---|
| 59 | public static double Calculate(IEnumerable<double> original, IEnumerable<double> estimated) {
|
---|
[4022] | 60 | OnlineNormalizedMeanSquaredErrorEvaluator nmseEvaluator = new OnlineNormalizedMeanSquaredErrorEvaluator();
|
---|
| 61 | var originalEnumerator = original.GetEnumerator();
|
---|
| 62 | var estimatedEnumerator = estimated.GetEnumerator();
|
---|
| 63 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
| 64 | nmseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
| 65 | }
|
---|
| 66 | if (originalEnumerator.MoveNext() || estimatedEnumerator.MoveNext()) {
|
---|
| 67 | throw new ArgumentException("Number of elements in original and estimated enumerations doesn't match.");
|
---|
| 68 | }
|
---|
| 69 | return nmseEvaluator.NormalizedMeanSquaredError;
|
---|
[3452] | 70 | }
|
---|
[2379] | 71 | }
|
---|
| 72 | }
|
---|