1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
27 | using HeuristicLab.MainForm;
|
---|
28 | using HeuristicLab.MainForm.WindowsForms;
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
30 | [View("Error Characteristics Curve")]
|
---|
31 | [Content(typeof(IRegressionSolution))]
|
---|
32 | public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
|
---|
33 | private IRegressionSolution constantModel;
|
---|
34 | protected const string TrainingSamples = "Training";
|
---|
35 | protected const string TestSamples = "Test";
|
---|
36 | protected const string AllSamples = "All Samples";
|
---|
37 |
|
---|
38 | public RegressionSolutionErrorCharacteristicsCurveView()
|
---|
39 | : base() {
|
---|
40 | InitializeComponent();
|
---|
41 |
|
---|
42 | cmbSamples.Items.Add(TrainingSamples);
|
---|
43 | cmbSamples.Items.Add(TestSamples);
|
---|
44 | cmbSamples.Items.Add(AllSamples);
|
---|
45 |
|
---|
46 | cmbSamples.SelectedIndex = 0;
|
---|
47 |
|
---|
48 | chart.CustomizeAllChartAreas();
|
---|
49 | chart.ChartAreas[0].AxisX.Title = "Absolute Error";
|
---|
50 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
51 | chart.ChartAreas[0].AxisX.Maximum = 1.0;
|
---|
52 | chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount;
|
---|
53 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
54 |
|
---|
55 | chart.ChartAreas[0].AxisY.Title = "Number of Samples";
|
---|
56 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
57 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
58 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
59 | chart.ChartAreas[0].CursorY.Interval = 0.01;
|
---|
60 | }
|
---|
61 |
|
---|
62 | public new IRegressionSolution Content {
|
---|
63 | get { return (IRegressionSolution)base.Content; }
|
---|
64 | set { base.Content = value; }
|
---|
65 | }
|
---|
66 | public IRegressionProblemData ProblemData {
|
---|
67 | get {
|
---|
68 | if (Content == null) return null;
|
---|
69 | return Content.ProblemData;
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | protected override void RegisterContentEvents() {
|
---|
74 | base.RegisterContentEvents();
|
---|
75 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
76 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
77 | }
|
---|
78 | protected override void DeregisterContentEvents() {
|
---|
79 | base.DeregisterContentEvents();
|
---|
80 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
81 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
82 | }
|
---|
83 |
|
---|
84 | protected virtual void Content_ModelChanged(object sender, EventArgs e) {
|
---|
85 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ModelChanged, sender, e);
|
---|
86 | else UpdateChart();
|
---|
87 | }
|
---|
88 | protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
89 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ProblemDataChanged, sender, e);
|
---|
90 | else {
|
---|
91 | UpdateChart();
|
---|
92 | }
|
---|
93 | }
|
---|
94 | protected override void OnContentChanged() {
|
---|
95 | base.OnContentChanged();
|
---|
96 | UpdateChart();
|
---|
97 | }
|
---|
98 |
|
---|
99 | protected virtual void UpdateChart() {
|
---|
100 | chart.Series.Clear();
|
---|
101 | chart.Annotations.Clear();
|
---|
102 | if (Content == null) return;
|
---|
103 |
|
---|
104 | var originalValues = GetOriginalValues().ToList();
|
---|
105 | constantModel = CreateConstantModel();
|
---|
106 | var meanModelEstimatedValues = GetEstimatedValues(constantModel);
|
---|
107 | var meanModelResiduals = GetResiduals(originalValues, meanModelEstimatedValues);
|
---|
108 |
|
---|
109 | meanModelResiduals.Sort();
|
---|
110 | chart.ChartAreas[0].AxisX.Maximum = Math.Ceiling(meanModelResiduals.Last());
|
---|
111 | chart.ChartAreas[0].CursorX.Interval = meanModelResiduals.First() / 100;
|
---|
112 |
|
---|
113 | Series meanModelSeries = new Series("Mean Model");
|
---|
114 | meanModelSeries.ChartType = SeriesChartType.FastLine;
|
---|
115 | UpdateSeries(meanModelResiduals, meanModelSeries);
|
---|
116 | meanModelSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(meanModelSeries);
|
---|
117 | meanModelSeries.Tag = constantModel;
|
---|
118 | chart.Series.Add(meanModelSeries);
|
---|
119 |
|
---|
120 | AddRegressionSolution(Content);
|
---|
121 | }
|
---|
122 |
|
---|
123 | protected void AddRegressionSolution(IRegressionSolution solution) {
|
---|
124 | if (chart.Series.Any(s => s.Name == solution.Name)) return;
|
---|
125 |
|
---|
126 | Series solutionSeries = new Series(solution.Name);
|
---|
127 | solutionSeries.Tag = solution;
|
---|
128 | solutionSeries.ChartType = SeriesChartType.FastLine;
|
---|
129 | var estimatedValues = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution));
|
---|
130 | UpdateSeries(estimatedValues, solutionSeries);
|
---|
131 | solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries);
|
---|
132 | chart.Series.Add(solutionSeries);
|
---|
133 | }
|
---|
134 |
|
---|
135 | protected void UpdateSeries(List<double> residuals, Series series) {
|
---|
136 | series.Points.Clear();
|
---|
137 | residuals.Sort();
|
---|
138 | if (!residuals.Any() || residuals.All(double.IsNaN)) return;
|
---|
139 |
|
---|
140 | series.Points.AddXY(0, 0);
|
---|
141 | for (int i = 0; i < residuals.Count; i++) {
|
---|
142 | var point = new DataPoint();
|
---|
143 | if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) {
|
---|
144 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
145 | point.YValues[0] = ((double)i) / residuals.Count;
|
---|
146 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
147 | series.Points.Add(point);
|
---|
148 | break;
|
---|
149 | }
|
---|
150 |
|
---|
151 | point.XValue = residuals[i];
|
---|
152 | point.YValues[0] = ((double)i + 1) / residuals.Count;
|
---|
153 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
154 | series.Points.Add(point);
|
---|
155 | }
|
---|
156 |
|
---|
157 | if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) {
|
---|
158 | var point = new DataPoint();
|
---|
159 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
160 | point.YValues[0] = 1;
|
---|
161 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
162 | series.Points.Add(point);
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 | protected IEnumerable<double> GetOriginalValues() {
|
---|
167 | IEnumerable<double> originalValues;
|
---|
168 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
169 | case TrainingSamples:
|
---|
170 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
171 | break;
|
---|
172 | case TestSamples:
|
---|
173 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
|
---|
174 | break;
|
---|
175 | case AllSamples:
|
---|
176 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable);
|
---|
177 | break;
|
---|
178 | default:
|
---|
179 | throw new NotSupportedException();
|
---|
180 | }
|
---|
181 | return originalValues;
|
---|
182 | }
|
---|
183 |
|
---|
184 | protected IEnumerable<double> GetEstimatedValues(IRegressionSolution solution) {
|
---|
185 | IEnumerable<double> estimatedValues;
|
---|
186 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
187 | case TrainingSamples:
|
---|
188 | estimatedValues = solution.EstimatedTrainingValues;
|
---|
189 | break;
|
---|
190 | case TestSamples:
|
---|
191 | estimatedValues = solution.EstimatedTestValues;
|
---|
192 | break;
|
---|
193 | case AllSamples:
|
---|
194 | estimatedValues = solution.EstimatedValues;
|
---|
195 | break;
|
---|
196 | default:
|
---|
197 | throw new NotSupportedException();
|
---|
198 | }
|
---|
199 | return estimatedValues;
|
---|
200 | }
|
---|
201 |
|
---|
202 | protected IEnumerable<double> GetMeanModelEstimatedValues(IEnumerable<double> originalValues) {
|
---|
203 | double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).Average();
|
---|
204 | return Enumerable.Repeat(averageTrainingTarget, originalValues.Count());
|
---|
205 | }
|
---|
206 |
|
---|
207 | protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
|
---|
208 | return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y)).ToList();
|
---|
209 | }
|
---|
210 |
|
---|
211 | private double CalculateAreaOverCurve(Series series) {
|
---|
212 | if (series.Points.Count < 1) return 0;
|
---|
213 |
|
---|
214 | double auc = 0.0;
|
---|
215 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
216 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
217 | double y1 = 1 - series.Points[i - 1].YValues[0];
|
---|
218 | double y2 = 1 - series.Points[i].YValues[0];
|
---|
219 |
|
---|
220 | auc += (y1 + y2) * width / 2;
|
---|
221 | }
|
---|
222 |
|
---|
223 | return auc;
|
---|
224 | }
|
---|
225 |
|
---|
226 | protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
227 | if (InvokeRequired) Invoke((Action<object, EventArgs>)cmbSamples_SelectedIndexChanged, sender, e);
|
---|
228 | else UpdateChart();
|
---|
229 | }
|
---|
230 |
|
---|
231 | #region Mean Model
|
---|
232 | private void chart_MouseDown(object sender, MouseEventArgs e) {
|
---|
233 | if (e.Clicks < 2) return;
|
---|
234 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
235 | if (result.ChartElementType != ChartElementType.LegendItem) return;
|
---|
236 | if (result.Series.Name != constantModel.Name) return;
|
---|
237 |
|
---|
238 | MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag);
|
---|
239 | }
|
---|
240 |
|
---|
241 | private IRegressionSolution CreateConstantModel() {
|
---|
242 | double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).Average();
|
---|
243 | var solution = new ConstantRegressionModel(averageTrainingTarget).CreateRegressionSolution(ProblemData);
|
---|
244 | solution.Name = "Mean Model";
|
---|
245 | return solution;
|
---|
246 | }
|
---|
247 | #endregion
|
---|
248 | }
|
---|
249 | }
|
---|