[4417] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11171] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[4417] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
| 27 | using HeuristicLab.MainForm;
|
---|
[7701] | 28 |
|
---|
[5829] | 29 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
[6642] | 30 | [View("Error Characteristics Curve")]
|
---|
| 31 | [Content(typeof(IRegressionSolution))]
|
---|
| 32 | public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
|
---|
| 33 | protected const string TrainingSamples = "Training";
|
---|
| 34 | protected const string TestSamples = "Test";
|
---|
| 35 | protected const string AllSamples = "All Samples";
|
---|
[4417] | 36 |
|
---|
[6642] | 37 | public RegressionSolutionErrorCharacteristicsCurveView()
|
---|
| 38 | : base() {
|
---|
[4417] | 39 | InitializeComponent();
|
---|
| 40 |
|
---|
| 41 | cmbSamples.Items.Add(TrainingSamples);
|
---|
| 42 | cmbSamples.Items.Add(TestSamples);
|
---|
[6642] | 43 | cmbSamples.Items.Add(AllSamples);
|
---|
| 44 |
|
---|
[4417] | 45 | cmbSamples.SelectedIndex = 0;
|
---|
| 46 |
|
---|
[4651] | 47 | chart.CustomizeAllChartAreas();
|
---|
[6642] | 48 | chart.ChartAreas[0].AxisX.Title = "Absolute Error";
|
---|
[4417] | 49 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
| 50 | chart.ChartAreas[0].AxisX.Maximum = 1.0;
|
---|
[6642] | 51 | chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount;
|
---|
| 52 | chart.ChartAreas[0].CursorX.Interval = 0.01;
|
---|
| 53 |
|
---|
[10500] | 54 | chart.ChartAreas[0].AxisY.Title = "Ratio of Residuals";
|
---|
[4417] | 55 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
| 56 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
| 57 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
[6642] | 58 | chart.ChartAreas[0].CursorY.Interval = 0.01;
|
---|
[4417] | 59 | }
|
---|
| 60 |
|
---|
[6642] | 61 | public new IRegressionSolution Content {
|
---|
| 62 | get { return (IRegressionSolution)base.Content; }
|
---|
[4417] | 63 | set { base.Content = value; }
|
---|
| 64 | }
|
---|
[6642] | 65 | public IRegressionProblemData ProblemData {
|
---|
| 66 | get {
|
---|
| 67 | if (Content == null) return null;
|
---|
| 68 | return Content.ProblemData;
|
---|
| 69 | }
|
---|
| 70 | }
|
---|
[4417] | 71 |
|
---|
| 72 | protected override void RegisterContentEvents() {
|
---|
| 73 | base.RegisterContentEvents();
|
---|
[5664] | 74 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
[4417] | 75 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 76 | }
|
---|
| 77 | protected override void DeregisterContentEvents() {
|
---|
| 78 | base.DeregisterContentEvents();
|
---|
[5664] | 79 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
[4417] | 80 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 81 | }
|
---|
| 82 |
|
---|
[6642] | 83 | protected virtual void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 84 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ModelChanged, sender, e);
|
---|
| 85 | else UpdateChart();
|
---|
[4417] | 86 | }
|
---|
[6642] | 87 | protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 88 | if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ProblemDataChanged, sender, e);
|
---|
| 89 | else {
|
---|
| 90 | UpdateChart();
|
---|
| 91 | }
|
---|
[4417] | 92 | }
|
---|
| 93 | protected override void OnContentChanged() {
|
---|
| 94 | base.OnContentChanged();
|
---|
[6642] | 95 | UpdateChart();
|
---|
[4417] | 96 | }
|
---|
| 97 |
|
---|
[6642] | 98 | protected virtual void UpdateChart() {
|
---|
| 99 | chart.Series.Clear();
|
---|
| 100 | chart.Annotations.Clear();
|
---|
[11093] | 101 |
|
---|
[6642] | 102 | if (Content == null) return;
|
---|
[11093] | 103 | if (cmbSamples.SelectedItem.ToString() == TrainingSamples && !ProblemData.TrainingIndices.Any()) return;
|
---|
| 104 | if (cmbSamples.SelectedItem.ToString() == TestSamples && !ProblemData.TestIndices.Any()) return;
|
---|
[4417] | 105 |
|
---|
[11093] | 106 | if (Content.ProblemData.TrainingIndices.Any()) {
|
---|
| 107 | var constantModel = CreateConstantModel();
|
---|
| 108 | var originalValues = GetOriginalValues().ToList();
|
---|
| 109 | var baselineEstimatedValues = GetEstimatedValues(constantModel);
|
---|
| 110 | var baselineResiduals = GetResiduals(originalValues, baselineEstimatedValues);
|
---|
[4417] | 111 |
|
---|
[11093] | 112 | Series baselineSeries = new Series("Baseline");
|
---|
| 113 | baselineSeries.ChartType = SeriesChartType.FastLine;
|
---|
| 114 | UpdateSeries(baselineResiduals, baselineSeries);
|
---|
| 115 | baselineSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(baselineSeries);
|
---|
| 116 | baselineSeries.Tag = constantModel;
|
---|
| 117 | baselineSeries.LegendToolTip = "Double-click to open model";
|
---|
| 118 | chart.Series.Add(baselineSeries);
|
---|
| 119 | }
|
---|
[4417] | 120 |
|
---|
[6642] | 121 | AddRegressionSolution(Content);
|
---|
| 122 | }
|
---|
[4417] | 123 |
|
---|
[6642] | 124 | protected void AddRegressionSolution(IRegressionSolution solution) {
|
---|
| 125 | if (chart.Series.Any(s => s.Name == solution.Name)) return;
|
---|
[4417] | 126 |
|
---|
[6642] | 127 | Series solutionSeries = new Series(solution.Name);
|
---|
| 128 | solutionSeries.Tag = solution;
|
---|
| 129 | solutionSeries.ChartType = SeriesChartType.FastLine;
|
---|
[11093] | 130 | var residuals = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution));
|
---|
| 131 |
|
---|
| 132 | chart.ChartAreas[0].AxisX.Maximum = Math.Ceiling(residuals.Max());
|
---|
| 133 | chart.ChartAreas[0].CursorX.Interval = residuals.Min() / 100;
|
---|
| 134 |
|
---|
| 135 | UpdateSeries(residuals, solutionSeries);
|
---|
| 136 |
|
---|
[6642] | 137 | solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries);
|
---|
[8105] | 138 | solutionSeries.LegendToolTip = "Double-click to open model";
|
---|
[6642] | 139 | chart.Series.Add(solutionSeries);
|
---|
| 140 | }
|
---|
[5417] | 141 |
|
---|
[6642] | 142 | protected void UpdateSeries(List<double> residuals, Series series) {
|
---|
| 143 | series.Points.Clear();
|
---|
| 144 | residuals.Sort();
|
---|
[6982] | 145 | if (!residuals.Any() || residuals.All(double.IsNaN)) return;
|
---|
[4417] | 146 |
|
---|
[6642] | 147 | series.Points.AddXY(0, 0);
|
---|
| 148 | for (int i = 0; i < residuals.Count; i++) {
|
---|
| 149 | var point = new DataPoint();
|
---|
| 150 | if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 151 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
[6750] | 152 | point.YValues[0] = ((double)i) / residuals.Count;
|
---|
[6642] | 153 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 154 | series.Points.Add(point);
|
---|
| 155 | break;
|
---|
| 156 | }
|
---|
[4417] | 157 |
|
---|
[6642] | 158 | point.XValue = residuals[i];
|
---|
[6982] | 159 | point.YValues[0] = ((double)i + 1) / residuals.Count;
|
---|
[6642] | 160 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 161 | series.Points.Add(point);
|
---|
| 162 | }
|
---|
[4417] | 163 |
|
---|
[6642] | 164 | if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) {
|
---|
| 165 | var point = new DataPoint();
|
---|
| 166 | point.XValue = chart.ChartAreas[0].AxisX.Maximum;
|
---|
| 167 | point.YValues[0] = 1;
|
---|
| 168 | point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
|
---|
| 169 | series.Points.Add(point);
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
[4417] | 172 |
|
---|
[6642] | 173 | protected IEnumerable<double> GetOriginalValues() {
|
---|
| 174 | IEnumerable<double> originalValues;
|
---|
| 175 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
| 176 | case TrainingSamples:
|
---|
[8139] | 177 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
|
---|
[6642] | 178 | break;
|
---|
| 179 | case TestSamples:
|
---|
[8139] | 180 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
|
---|
[6642] | 181 | break;
|
---|
| 182 | case AllSamples:
|
---|
[6740] | 183 | originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable);
|
---|
[6642] | 184 | break;
|
---|
| 185 | default:
|
---|
| 186 | throw new NotSupportedException();
|
---|
| 187 | }
|
---|
| 188 | return originalValues;
|
---|
| 189 | }
|
---|
[4417] | 190 |
|
---|
[6642] | 191 | protected IEnumerable<double> GetEstimatedValues(IRegressionSolution solution) {
|
---|
| 192 | IEnumerable<double> estimatedValues;
|
---|
| 193 | switch (cmbSamples.SelectedItem.ToString()) {
|
---|
| 194 | case TrainingSamples:
|
---|
| 195 | estimatedValues = solution.EstimatedTrainingValues;
|
---|
| 196 | break;
|
---|
| 197 | case TestSamples:
|
---|
| 198 | estimatedValues = solution.EstimatedTestValues;
|
---|
| 199 | break;
|
---|
| 200 | case AllSamples:
|
---|
| 201 | estimatedValues = solution.EstimatedValues;
|
---|
| 202 | break;
|
---|
| 203 | default:
|
---|
| 204 | throw new NotSupportedException();
|
---|
[4417] | 205 | }
|
---|
[6642] | 206 | return estimatedValues;
|
---|
[4417] | 207 | }
|
---|
| 208 |
|
---|
[6642] | 209 | protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
|
---|
| 210 | return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y)).ToList();
|
---|
[4417] | 211 | }
|
---|
| 212 |
|
---|
[6642] | 213 | private double CalculateAreaOverCurve(Series series) {
|
---|
[6982] | 214 | if (series.Points.Count < 1) return 0;
|
---|
[4417] | 215 |
|
---|
| 216 | double auc = 0.0;
|
---|
| 217 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
| 218 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
[6642] | 219 | double y1 = 1 - series.Points[i - 1].YValues[0];
|
---|
| 220 | double y2 = 1 - series.Points[i].YValues[0];
|
---|
[4417] | 221 |
|
---|
| 222 | auc += (y1 + y2) * width / 2;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | return auc;
|
---|
| 226 | }
|
---|
| 227 |
|
---|
[6642] | 228 | protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 229 | if (InvokeRequired) Invoke((Action<object, EventArgs>)cmbSamples_SelectedIndexChanged, sender, e);
|
---|
| 230 | else UpdateChart();
|
---|
[4417] | 231 | }
|
---|
[7043] | 232 |
|
---|
[7701] | 233 | #region Baseline
|
---|
[7700] | 234 | private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
|
---|
[7043] | 235 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
| 236 | if (result.ChartElementType != ChartElementType.LegendItem) return;
|
---|
| 237 |
|
---|
| 238 | MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag);
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | private IRegressionSolution CreateConstantModel() {
|
---|
[8139] | 242 | double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
[8963] | 243 | var model = new ConstantRegressionModel(averageTrainingTarget);
|
---|
[11093] | 244 | var solution = new ConstantRegressionSolution(model, (IRegressionProblemData)ProblemData.Clone());
|
---|
[7700] | 245 | solution.Name = "Baseline";
|
---|
[7043] | 246 | return solution;
|
---|
| 247 | }
|
---|
[7701] | 248 | #endregion
|
---|
[7700] | 249 |
|
---|
[7701] | 250 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
| 251 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
[8102] | 252 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
[7701] | 253 | Cursor = Cursors.Hand;
|
---|
[8102] | 254 | } else {
|
---|
[7701] | 255 | Cursor = Cursors.Default;
|
---|
[8102] | 256 | }
|
---|
[7700] | 257 | }
|
---|
[4417] | 258 | }
|
---|
| 259 | }
|
---|