1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Text;
|
---|
27 | using System.Windows.Forms;
|
---|
28 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core.Views;
|
---|
31 | using HeuristicLab.MainForm;
|
---|
32 | using HeuristicLab.MainForm.WindowsForms;
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
34 | [View("DiscriminantFunctionClassificationSolution ROC Curves")]
|
---|
35 | [Content(typeof(IDiscriminantFunctionClassificationSolution))]
|
---|
36 | public partial class DiscriminantFunctionClassificationRocCurvesView : ItemView, IDiscriminantFunctionClassificationSolutionEvaluationView {
|
---|
37 | private const string xAxisTitle = "False Positive Rate";
|
---|
38 | private const string yAxisTitle = "True Positive Rate";
|
---|
39 | private const string TrainingSamples = "Training";
|
---|
40 | private const string TestSamples = "Test";
|
---|
41 | private Dictionary<string, List<ROCPoint>> cachedRocPoints;
|
---|
42 |
|
---|
43 | public DiscriminantFunctionClassificationRocCurvesView() {
|
---|
44 | InitializeComponent();
|
---|
45 |
|
---|
46 | cachedRocPoints = new Dictionary<string, List<ROCPoint>>();
|
---|
47 |
|
---|
48 | cmbSamples.Items.Add(TrainingSamples);
|
---|
49 | cmbSamples.Items.Add(TestSamples);
|
---|
50 | cmbSamples.SelectedIndex = 0;
|
---|
51 |
|
---|
52 | chart.CustomizeAllChartAreas();
|
---|
53 | chart.ChartAreas[0].AxisX.Minimum = 0.0;
|
---|
54 | chart.ChartAreas[0].AxisX.Maximum = 1.0;
|
---|
55 | chart.ChartAreas[0].AxisX.MajorGrid.Interval = 0.2;
|
---|
56 | chart.ChartAreas[0].AxisY.Minimum = 0.0;
|
---|
57 | chart.ChartAreas[0].AxisY.Maximum = 1.0;
|
---|
58 | chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
|
---|
59 |
|
---|
60 | chart.ChartAreas[0].AxisX.Title = xAxisTitle;
|
---|
61 | chart.ChartAreas[0].AxisY.Title = yAxisTitle;
|
---|
62 | }
|
---|
63 |
|
---|
64 | public new IDiscriminantFunctionClassificationSolution Content {
|
---|
65 | get { return (IDiscriminantFunctionClassificationSolution)base.Content; }
|
---|
66 | set { base.Content = value; }
|
---|
67 | }
|
---|
68 |
|
---|
69 | protected override void RegisterContentEvents() {
|
---|
70 | base.RegisterContentEvents();
|
---|
71 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
72 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
73 | }
|
---|
74 | protected override void DeregisterContentEvents() {
|
---|
75 | base.DeregisterContentEvents();
|
---|
76 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
77 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
78 | }
|
---|
79 |
|
---|
80 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
81 | UpdateChart();
|
---|
82 | }
|
---|
83 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
84 | UpdateChart();
|
---|
85 | }
|
---|
86 |
|
---|
87 | protected override void OnContentChanged() {
|
---|
88 | base.OnContentChanged();
|
---|
89 | chart.Series.Clear();
|
---|
90 | if (Content != null) UpdateChart();
|
---|
91 | }
|
---|
92 |
|
---|
93 | private void UpdateChart() {
|
---|
94 | if (InvokeRequired) Invoke((Action)UpdateChart);
|
---|
95 | else {
|
---|
96 | chart.Series.Clear();
|
---|
97 | chart.Annotations.Clear();
|
---|
98 | cachedRocPoints.Clear();
|
---|
99 |
|
---|
100 | int slices = 100;
|
---|
101 | IEnumerable<int> rows;
|
---|
102 |
|
---|
103 | if (cmbSamples.SelectedItem.ToString() == TrainingSamples) {
|
---|
104 | rows = Content.ProblemData.TrainingIndizes;
|
---|
105 | } else if (cmbSamples.SelectedItem.ToString() == TestSamples) {
|
---|
106 | rows = Content.ProblemData.TestIndizes;
|
---|
107 | } else throw new InvalidOperationException();
|
---|
108 |
|
---|
109 | double[] estimatedValues = Content.GetEstimatedValues(rows).ToArray();
|
---|
110 | double[] targetClassValues = Content.ProblemData.Dataset.GetEnumeratedVariableValues(Content.ProblemData.TargetVariable, rows).ToArray();
|
---|
111 | double minThreshold = estimatedValues.Min();
|
---|
112 | double maxThreshold = estimatedValues.Max();
|
---|
113 | double thresholdIncrement = (maxThreshold - minThreshold) / slices;
|
---|
114 | minThreshold -= thresholdIncrement;
|
---|
115 | maxThreshold += thresholdIncrement;
|
---|
116 |
|
---|
117 | List<double> classValues = Content.ProblemData.ClassValues.OrderBy(x => x).ToList();
|
---|
118 |
|
---|
119 | foreach (double classValue in classValues) {
|
---|
120 | List<ROCPoint> rocPoints = new List<ROCPoint>();
|
---|
121 | int positives = targetClassValues.Where(c => c.IsAlmost(classValue)).Count();
|
---|
122 | int negatives = targetClassValues.Length - positives;
|
---|
123 |
|
---|
124 | for (double lowerThreshold = minThreshold; lowerThreshold < maxThreshold; lowerThreshold += thresholdIncrement) {
|
---|
125 | for (double upperThreshold = lowerThreshold + thresholdIncrement; upperThreshold < maxThreshold; upperThreshold += thresholdIncrement) {
|
---|
126 | //only adapt lower threshold for binary classification problems and upper class prediction
|
---|
127 | if (classValues.Count == 2 && classValue == classValues[1]) upperThreshold = double.PositiveInfinity;
|
---|
128 |
|
---|
129 | int truePositives = 0;
|
---|
130 | int falsePositives = 0;
|
---|
131 |
|
---|
132 | for (int row = 0; row < estimatedValues.Length; row++) {
|
---|
133 | if (lowerThreshold < estimatedValues[row] && estimatedValues[row] < upperThreshold) {
|
---|
134 | if (targetClassValues[row].IsAlmost(classValue)) truePositives++;
|
---|
135 | else falsePositives++;
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | double truePositiveRate = ((double)truePositives) / positives;
|
---|
140 | double falsePositiveRate = ((double)falsePositives) / negatives;
|
---|
141 |
|
---|
142 | ROCPoint rocPoint = new ROCPoint(truePositiveRate, falsePositiveRate, lowerThreshold, upperThreshold);
|
---|
143 | if (!rocPoints.Any(x => x.truePositiveRate >= rocPoint.truePositiveRate && x.falsePositiveRate <= rocPoint.falsePositiveRate)) {
|
---|
144 | rocPoints.RemoveAll(x => x.falsePositiveRate >= rocPoint.falsePositiveRate && x.truePositiveRate <= rocPoint.truePositiveRate);
|
---|
145 | rocPoints.Add(rocPoint);
|
---|
146 | }
|
---|
147 | }
|
---|
148 | //only adapt upper threshold for binary classification problems and upper class prediction
|
---|
149 | if (classValues.Count == 2 && classValue == classValues[0]) lowerThreshold = double.PositiveInfinity;
|
---|
150 | }
|
---|
151 |
|
---|
152 | string className = Content.ProblemData.ClassNames.ElementAt(classValues.IndexOf(classValue));
|
---|
153 | cachedRocPoints[className] = rocPoints.OrderBy(x => x.falsePositiveRate).ToList(); ;
|
---|
154 |
|
---|
155 | Series series = new Series(className);
|
---|
156 | series.ChartType = SeriesChartType.Line;
|
---|
157 | series.MarkerStyle = MarkerStyle.Diamond;
|
---|
158 | series.MarkerSize = 5;
|
---|
159 | chart.Series.Add(series);
|
---|
160 | FillSeriesWithDataPoints(series, cachedRocPoints[className]);
|
---|
161 |
|
---|
162 | double auc = CalculateAreaUnderCurve(series);
|
---|
163 | series.LegendToolTip = "AUC: " + auc;
|
---|
164 | }
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | private void FillSeriesWithDataPoints(Series series, IEnumerable<ROCPoint> rocPoints) {
|
---|
169 | series.Points.Add(new DataPoint(0, 0));
|
---|
170 | foreach (ROCPoint rocPoint in rocPoints) {
|
---|
171 | DataPoint point = new DataPoint();
|
---|
172 | point.XValue = rocPoint.falsePositiveRate;
|
---|
173 | point.YValues[0] = rocPoint.truePositiveRate;
|
---|
174 | point.Tag = rocPoint;
|
---|
175 |
|
---|
176 | StringBuilder sb = new StringBuilder();
|
---|
177 | sb.AppendLine("True Positive Rate: " + rocPoint.truePositiveRate);
|
---|
178 | sb.AppendLine("False Positive Rate: " + rocPoint.falsePositiveRate);
|
---|
179 | sb.AppendLine("Upper Threshold: " + rocPoint.upperThreshold);
|
---|
180 | sb.AppendLine("Lower Threshold: " + rocPoint.lowerThreshold);
|
---|
181 | point.ToolTip = sb.ToString();
|
---|
182 |
|
---|
183 | series.Points.Add(point);
|
---|
184 | }
|
---|
185 | series.Points.Add(new DataPoint(1, 1));
|
---|
186 | }
|
---|
187 |
|
---|
188 | private double CalculateAreaUnderCurve(Series series) {
|
---|
189 | if (series.Points.Count < 1) throw new ArgumentException("Could not calculate area under curve if less than 1 data points were given.");
|
---|
190 |
|
---|
191 | double auc = 0.0;
|
---|
192 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
193 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
194 | double y1 = series.Points[i - 1].YValues[0];
|
---|
195 | double y2 = series.Points[i].YValues[0];
|
---|
196 |
|
---|
197 | auc += (y1 + y2) * width / 2;
|
---|
198 | }
|
---|
199 |
|
---|
200 | return auc;
|
---|
201 | }
|
---|
202 |
|
---|
203 | private void cmbSamples_SelectedIndexChanged(object sender, System.EventArgs e) {
|
---|
204 | if (Content != null)
|
---|
205 | UpdateChart();
|
---|
206 | }
|
---|
207 |
|
---|
208 |
|
---|
209 | #region show / hide series
|
---|
210 | private void ToggleSeries(Series series) {
|
---|
211 | if (series.Points.Count == 0)
|
---|
212 | FillSeriesWithDataPoints(series, cachedRocPoints[series.Name]);
|
---|
213 | else
|
---|
214 | series.Points.Clear();
|
---|
215 | }
|
---|
216 | private void chart_MouseDown(object sender, MouseEventArgs e) {
|
---|
217 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
218 | if (result.ChartElementType == ChartElementType.LegendItem) {
|
---|
219 | if (result.Series != null) ToggleSeries(result.Series);
|
---|
220 | }
|
---|
221 | }
|
---|
222 | private void chart_CustomizeLegend(object sender, CustomizeLegendEventArgs e) {
|
---|
223 | foreach (LegendItem legendItem in e.LegendItems) {
|
---|
224 | var series = chart.Series[legendItem.SeriesName];
|
---|
225 | if (series != null) {
|
---|
226 | bool seriesIsInvisible = series.Points.Count == 0;
|
---|
227 | foreach (LegendCell cell in legendItem.Cells)
|
---|
228 | cell.ForeColor = seriesIsInvisible ? Color.Gray : Color.Black;
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|
232 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
233 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
234 | if (result.ChartElementType == ChartElementType.LegendItem)
|
---|
235 | this.Cursor = Cursors.Hand;
|
---|
236 | else
|
---|
237 | this.Cursor = Cursors.Default;
|
---|
238 |
|
---|
239 | string newTooltipText = string.Empty;
|
---|
240 | if (result.ChartElementType == ChartElementType.DataPoint)
|
---|
241 | newTooltipText = ((DataPoint)result.Object).ToolTip;
|
---|
242 |
|
---|
243 | string oldTooltipText = this.toolTip.GetToolTip(chart);
|
---|
244 | if (newTooltipText != oldTooltipText)
|
---|
245 | this.toolTip.SetToolTip(chart, newTooltipText);
|
---|
246 | }
|
---|
247 | #endregion
|
---|
248 |
|
---|
249 |
|
---|
250 | private class ROCPoint {
|
---|
251 | public ROCPoint(double truePositiveRate, double falsePositiveRate, double lowerThreshold, double upperThreshold) {
|
---|
252 | this.truePositiveRate = truePositiveRate;
|
---|
253 | this.falsePositiveRate = falsePositiveRate;
|
---|
254 | this.lowerThreshold = lowerThreshold;
|
---|
255 | this.upperThreshold = upperThreshold;
|
---|
256 |
|
---|
257 | }
|
---|
258 | public double truePositiveRate { get; private set; }
|
---|
259 | public double falsePositiveRate { get; private set; }
|
---|
260 | public double lowerThreshold { get; private set; }
|
---|
261 | public double upperThreshold { get; private set; }
|
---|
262 | }
|
---|
263 |
|
---|
264 | }
|
---|
265 | }
|
---|