[11219] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[11486] | 24 | using System.Diagnostics;
|
---|
| 25 | using System.Globalization;
|
---|
[11219] | 26 | using System.Linq;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Optimization.Operators;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
[11221] | 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[11219] | 34 | [StorableClass]
|
---|
[11910] | 35 | [Item("SymbolicExpressionTreeBottomUpSimilarityCalculator", "A similarity calculator which uses the tree bottom-up distance as a similarity metric.")]
|
---|
| 36 | public class SymbolicExpressionTreeBottomUpSimilarityCalculator : SingleObjectiveSolutionSimilarityCalculator {
|
---|
[11486] | 37 | private readonly HashSet<string> commutativeSymbols = new HashSet<string> { "Addition", "Multiplication", "Average", "And", "Or", "Xor" };
|
---|
[11910] | 38 | public SymbolicExpressionTreeBottomUpSimilarityCalculator() { }
|
---|
[11219] | 39 |
|
---|
[11918] | 40 | [StorableConstructor]
|
---|
[11921] | 41 | protected SymbolicExpressionTreeBottomUpSimilarityCalculator(bool deserializing)
|
---|
[11918] | 42 | : base(deserializing) {
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[11910] | 45 | protected SymbolicExpressionTreeBottomUpSimilarityCalculator(SymbolicExpressionTreeBottomUpSimilarityCalculator original, Cloner cloner)
|
---|
[11486] | 46 | : base(original, cloner) {
|
---|
[11239] | 47 | }
|
---|
| 48 |
|
---|
[11219] | 49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[11910] | 50 | return new SymbolicExpressionTreeBottomUpSimilarityCalculator(this, cloner);
|
---|
[11219] | 51 | }
|
---|
| 52 |
|
---|
[11486] | 53 | public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
|
---|
| 54 | if (t1 == t2)
|
---|
| 55 | return 1;
|
---|
| 56 |
|
---|
| 57 | var map = ComputeBottomUpMapping(t1.Root, t2.Root);
|
---|
| 58 | return 2.0 * map.Count / (t1.Length + t2.Length);
|
---|
[11219] | 59 | }
|
---|
| 60 |
|
---|
| 61 | public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) {
|
---|
| 62 | var t1 = leftSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
|
---|
| 63 | var t2 = rightSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
|
---|
| 64 |
|
---|
| 65 | if (t1 == null || t2 == null)
|
---|
| 66 | throw new ArgumentException("Cannot calculate similarity when one of the arguments is null.");
|
---|
| 67 |
|
---|
[11486] | 68 | var similarity = CalculateSimilarity(t1, t2);
|
---|
[11224] | 69 | if (similarity > 1.0)
|
---|
| 70 | throw new Exception("Similarity value cannot be greater than 1");
|
---|
| 71 |
|
---|
| 72 | return similarity;
|
---|
[11219] | 73 | }
|
---|
| 74 |
|
---|
[11221] | 75 | public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
|
---|
[11486] | 76 | var comparer = new SymbolicExpressionTreeNodeComparer(); // use a node comparer because it's faster than calling node.ToString() (strings are expensive) and comparing strings
|
---|
[11221] | 77 | var compactedGraph = Compact(n1, n2);
|
---|
[11219] | 78 |
|
---|
| 79 | var forwardMap = new Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode>(); // nodes of t1 => nodes of t2
|
---|
| 80 | var reverseMap = new Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode>(); // nodes of t2 => nodes of t1
|
---|
| 81 |
|
---|
[11225] | 82 | // visit nodes in order of decreasing height to ensure correct mapping
|
---|
[11487] | 83 | var nodes1 = n1.IterateNodesPrefix().ToList();
|
---|
| 84 | var nodes2 = n2.IterateNodesPrefix().ToList();
|
---|
[11894] | 85 | for (int i = 0; i < nodes1.Count; ++i) {
|
---|
| 86 | var v = nodes1[i];
|
---|
[11225] | 87 | if (forwardMap.ContainsKey(v))
|
---|
| 88 | continue;
|
---|
[11219] | 89 | var kv = compactedGraph[v];
|
---|
| 90 | ISymbolicExpressionTreeNode w = null;
|
---|
[11894] | 91 | for (int j = 0; j < nodes2.Count; ++j) {
|
---|
| 92 | var t = nodes2[j];
|
---|
[11225] | 93 | if (reverseMap.ContainsKey(t) || compactedGraph[t] != kv)
|
---|
| 94 | continue;
|
---|
[11219] | 95 | w = t;
|
---|
| 96 | break;
|
---|
| 97 | }
|
---|
| 98 | if (w == null) continue;
|
---|
| 99 |
|
---|
| 100 | // at this point we know that v and w are isomorphic, however, the mapping cannot be done directly (as in the paper) because the trees are unordered (subtree order might differ)
|
---|
| 101 | // the solution is to sort subtrees by label using IterateBreadthOrdered (this will work because the subtrees are isomorphic!) and simultaneously iterate over the two subtrees
|
---|
[11894] | 102 | var vv = IterateBreadthOrdered(v, comparer).ToList();
|
---|
| 103 | var ww = IterateBreadthOrdered(w, comparer).ToList();
|
---|
| 104 | int len = Math.Min(vv.Count, ww.Count);
|
---|
| 105 | for (int j = 0; j < len; ++j) {
|
---|
| 106 | var s = vv[j];
|
---|
| 107 | var t = ww[j];
|
---|
[11486] | 108 | Debug.Assert(!reverseMap.ContainsKey(t));
|
---|
[11225] | 109 |
|
---|
[11219] | 110 | forwardMap[s] = t;
|
---|
| 111 | reverseMap[t] = s;
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | return forwardMap;
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | /// <summary>
|
---|
| 119 | /// Creates a compact representation of the two trees as a directed acyclic graph
|
---|
| 120 | /// </summary>
|
---|
[11229] | 121 | /// <param name="n1">The root of the first tree</param>
|
---|
| 122 | /// <param name="n2">The root of the second tree</param>
|
---|
[11219] | 123 | /// <returns>The compacted DAG representing the two trees</returns>
|
---|
[11229] | 124 | private Dictionary<ISymbolicExpressionTreeNode, GraphNode> Compact(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
|
---|
| 125 | var nodeMap = new Dictionary<ISymbolicExpressionTreeNode, GraphNode>(); // K
|
---|
| 126 | var labelMap = new Dictionary<string, GraphNode>(); // L
|
---|
[11219] | 127 | var childrenCount = new Dictionary<ISymbolicExpressionTreeNode, int>(); // Children
|
---|
| 128 |
|
---|
[11221] | 129 | var nodes = n1.IterateNodesPostfix().Concat(n2.IterateNodesPostfix()); // the disjoint union F
|
---|
[11487] | 130 | var list = new List<GraphNode>();
|
---|
[11219] | 131 | var queue = new Queue<ISymbolicExpressionTreeNode>();
|
---|
| 132 |
|
---|
| 133 | foreach (var n in nodes) {
|
---|
| 134 | if (n.SubtreeCount == 0) {
|
---|
[11486] | 135 | var label = Label(n);
|
---|
[11229] | 136 | if (!labelMap.ContainsKey(label)) {
|
---|
| 137 | var z = new GraphNode { SymbolicExpressionTreeNode = n, Label = label };
|
---|
| 138 | labelMap[z.Label] = z;
|
---|
[11225] | 139 | }
|
---|
[11229] | 140 | nodeMap[n] = labelMap[label];
|
---|
[11219] | 141 | queue.Enqueue(n);
|
---|
| 142 | } else {
|
---|
| 143 | childrenCount[n] = n.SubtreeCount;
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 | while (queue.Any()) {
|
---|
[11229] | 147 | var n = queue.Dequeue();
|
---|
| 148 | if (n.SubtreeCount > 0) {
|
---|
[11894] | 149 | bool found = false;
|
---|
[11229] | 150 | var label = n.Symbol.Name;
|
---|
| 151 | var depth = n.GetDepth();
|
---|
[11219] | 152 |
|
---|
[11894] | 153 | bool sort = n.SubtreeCount > 1 && commutativeSymbols.Contains(label);
|
---|
| 154 | var nSubtrees = n.Subtrees.Select(x => nodeMap[x]).ToList();
|
---|
| 155 | if (sort) nSubtrees.Sort((a, b) => string.CompareOrdinal(a.Label, b.Label));
|
---|
[11219] | 156 |
|
---|
[11229] | 157 | for (int i = list.Count - 1; i >= 0; --i) {
|
---|
| 158 | var w = list[i];
|
---|
[11894] | 159 | if (!(n.SubtreeCount == w.SubtreeCount && label == w.Label && depth == w.Depth))
|
---|
[11219] | 160 | continue;
|
---|
| 161 |
|
---|
| 162 | // sort V and W when the symbol is commutative because we are dealing with unordered trees
|
---|
[11229] | 163 | var m = w.SymbolicExpressionTreeNode;
|
---|
[11894] | 164 | var mSubtrees = m.Subtrees.Select(x => nodeMap[x]).ToList();
|
---|
| 165 | if (sort) mSubtrees.Sort((a, b) => string.CompareOrdinal(a.Label, b.Label));
|
---|
[11219] | 166 |
|
---|
[11894] | 167 | found = nSubtrees.SequenceEqual(mSubtrees);
|
---|
| 168 | if (found) {
|
---|
[11229] | 169 | nodeMap[n] = w;
|
---|
[11219] | 170 | break;
|
---|
| 171 | }
|
---|
[11229] | 172 | }
|
---|
[11219] | 173 |
|
---|
| 174 | if (!found) {
|
---|
[11486] | 175 | var w = new GraphNode { SymbolicExpressionTreeNode = n, Label = label, Depth = depth };
|
---|
[11229] | 176 | list.Add(w);
|
---|
| 177 | nodeMap[n] = w;
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
[11219] | 180 |
|
---|
[11486] | 181 | if (n == n1 || n == n2)
|
---|
| 182 | continue;
|
---|
| 183 |
|
---|
[11229] | 184 | var p = n.Parent;
|
---|
[11219] | 185 | if (p == null)
|
---|
| 186 | continue;
|
---|
| 187 |
|
---|
| 188 | childrenCount[p]--;
|
---|
| 189 |
|
---|
| 190 | if (childrenCount[p] == 0)
|
---|
| 191 | queue.Enqueue(p);
|
---|
[11220] | 192 | }
|
---|
[11219] | 193 |
|
---|
[11229] | 194 | return nodeMap;
|
---|
[11219] | 195 | }
|
---|
| 196 |
|
---|
[11486] | 197 | private IEnumerable<ISymbolicExpressionTreeNode> IterateBreadthOrdered(ISymbolicExpressionTreeNode node, ISymbolicExpressionTreeNodeComparer comparer) {
|
---|
[11219] | 198 | var list = new List<ISymbolicExpressionTreeNode> { node };
|
---|
| 199 | int i = 0;
|
---|
| 200 | while (i < list.Count) {
|
---|
| 201 | var n = list[i];
|
---|
| 202 | if (n.SubtreeCount > 0) {
|
---|
[11486] | 203 | var subtrees = commutativeSymbols.Contains(node.Symbol.Name) ? n.Subtrees.OrderBy(x => x, comparer) : n.Subtrees;
|
---|
[11219] | 204 | list.AddRange(subtrees);
|
---|
| 205 | }
|
---|
| 206 | i++;
|
---|
| 207 | }
|
---|
| 208 | return list;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
[11486] | 211 | private string Label(ISymbolicExpressionTreeNode node) {
|
---|
| 212 | if (node.SubtreeCount > 0)
|
---|
| 213 | return node.Symbol.Name;
|
---|
| 214 |
|
---|
| 215 | var constant = node as ConstantTreeNode;
|
---|
| 216 | if (constant != null)
|
---|
[11950] | 217 | return constant.Value.ToString(CultureInfo.InvariantCulture);
|
---|
| 218 |
|
---|
[11486] | 219 | var variable = node as VariableTreeNode;
|
---|
[11950] | 220 | if (variable != null)
|
---|
| 221 | return variable.Weight + variable.VariableName;
|
---|
[11486] | 222 |
|
---|
| 223 | return node.ToString();
|
---|
| 224 | }
|
---|
| 225 |
|
---|
[11229] | 226 | private class GraphNode {
|
---|
| 227 | public ISymbolicExpressionTreeNode SymbolicExpressionTreeNode;
|
---|
| 228 | public string Label;
|
---|
| 229 | public int Depth;
|
---|
[11894] | 230 | public int SubtreeCount { get { return SymbolicExpressionTreeNode.SubtreeCount; } }
|
---|
[11219] | 231 | }
|
---|
| 232 | }
|
---|
| 233 | }
|
---|