Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisProblem.cs @ 13797

Last change on this file since 13797 was 12422, checked in by mkommend, 10 years ago

#2320: Merged the encoding class and all accompanying changes in the trunk.

File size: 20.7 KB
RevLine 
[5577]1#region License Information
2/* HeuristicLab
[12012]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5577]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Drawing;
[5618]24using System.Linq;
[5577]25using HeuristicLab.Common;
26using HeuristicLab.Common.Resources;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
[5618]29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[5577]30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[5618]33using HeuristicLab.PluginInfrastructure;
[7823]34using HeuristicLab.Problems.Instances;
[5577]35
36namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
37  [StorableClass]
[7823]38  public abstract class SymbolicDataAnalysisProblem<T, U, V> : HeuristicOptimizationProblem<U, V>, IDataAnalysisProblem<T>, ISymbolicDataAnalysisProblem, IStorableContent,
39    IProblemInstanceConsumer<T>, IProblemInstanceExporter<T>
[6978]40    where T : class, IDataAnalysisProblemData
[5580]41    where U : class, ISymbolicDataAnalysisEvaluator<T>
42    where V : class, ISymbolicDataAnalysisSolutionCreator {
[5770]43
[5577]44    #region parameter names & descriptions
45    private const string ProblemDataParameterName = "ProblemData";
46    private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
47    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
48    private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
49    private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
50    private const string MaximumFunctionDefinitionsParameterName = "MaximumFunctionDefinitions";
51    private const string MaximumFunctionArgumentsParameterName = "MaximumFunctionArguments";
[5759]52    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
[5733]53    private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
[5775]54    private const string ValidationPartitionParameterName = "ValidationPartition";
[8664]55    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
[5577]56
57    private const string ProblemDataParameterDescription = "";
58    private const string SymbolicExpressionTreeGrammarParameterDescription = "The grammar that should be used for symbolic expression tree.";
59    private const string SymoblicExpressionTreeInterpreterParameterDescription = "The interpreter that should be used to evaluate the symbolic expression tree.";
60    private const string MaximumSymbolicExpressionTreeDepthParameterDescription = "Maximal depth of the symbolic expression. The minimum depth needed for the algorithm is 3 because two levels are reserved for the ProgramRoot and the Start symbol.";
61    private const string MaximumSymbolicExpressionTreeLengthParameterDescription = "Maximal length of the symbolic expression.";
62    private const string MaximumFunctionDefinitionsParameterDescription = "Maximal number of automatically defined functions";
63    private const string MaximumFunctionArgumentsParameterDescription = "Maximal number of arguments of automatically defined functions.";
[5759]64    private const string RelativeNumberOfEvaluatedSamplesParameterDescription = "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation.";
65    private const string FitnessCalculationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to calculate the fitness of an individual.";
[5857]66    private const string ValidationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to select the best model from (optional).";
[8664]67    private const string ApplyLinearScalingParameterDescription = "Flag that indicates if the individual should be linearly scaled before evaluating.";
[5577]68    #endregion
69
70    #region parameter properties
71    IParameter IDataAnalysisProblem.ProblemDataParameter {
72      get { return ProblemDataParameter; }
73    }
74    public IValueParameter<T> ProblemDataParameter {
75      get { return (IValueParameter<T>)Parameters[ProblemDataParameterName]; }
76    }
77    public IValueParameter<ISymbolicDataAnalysisGrammar> SymbolicExpressionTreeGrammarParameter {
78      get { return (IValueParameter<ISymbolicDataAnalysisGrammar>)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
79    }
[5624]80    public IValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
81      get { return (IValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
[5577]82    }
[5618]83    public IFixedValueParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
84      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
[5577]85    }
[5618]86    public IFixedValueParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
87      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
[5577]88    }
[5618]89    public IFixedValueParameter<IntValue> MaximumFunctionDefinitionsParameter {
90      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumFunctionDefinitionsParameterName]; }
[5577]91    }
[5618]92    public IFixedValueParameter<IntValue> MaximumFunctionArgumentsParameter {
93      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumFunctionArgumentsParameterName]; }
[5577]94    }
[5759]95    public IFixedValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
96      get { return (IFixedValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
97    }
98    public IFixedValueParameter<IntRange> FitnessCalculationPartitionParameter {
99      get { return (IFixedValueParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
100    }
[5883]101    public IFixedValueParameter<IntRange> ValidationPartitionParameter {
[5775]102      get { return (IFixedValueParameter<IntRange>)Parameters[ValidationPartitionParameterName]; }
[5759]103    }
[8664]104    public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
105      get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
106    }
[5577]107    #endregion
108
109    #region properties
110    public string Filename { get; set; }
[7201]111    public static new Image StaticItemImage { get { return VSImageLibrary.Type; } }
[5577]112
113    IDataAnalysisProblemData IDataAnalysisProblem.ProblemData {
114      get { return ProblemData; }
115    }
116    public T ProblemData {
117      get { return ProblemDataParameter.Value; }
[5618]118      set { ProblemDataParameter.Value = value; }
[5577]119    }
120
121    public ISymbolicDataAnalysisGrammar SymbolicExpressionTreeGrammar {
122      get { return SymbolicExpressionTreeGrammarParameter.Value; }
[5618]123      set { SymbolicExpressionTreeGrammarParameter.Value = value; }
[5577]124    }
[5624]125    public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
[5577]126      get { return SymbolicExpressionTreeInterpreterParameter.Value; }
[5618]127      set { SymbolicExpressionTreeInterpreterParameter.Value = value; }
[5577]128    }
129
130    public IntValue MaximumSymbolicExpressionTreeDepth {
131      get { return MaximumSymbolicExpressionTreeDepthParameter.Value; }
132    }
133    public IntValue MaximumSymbolicExpressionTreeLength {
134      get { return MaximumSymbolicExpressionTreeLengthParameter.Value; }
135    }
136    public IntValue MaximumFunctionDefinitions {
137      get { return MaximumFunctionDefinitionsParameter.Value; }
138    }
139    public IntValue MaximumFunctionArguments {
[5618]140      get { return MaximumFunctionArgumentsParameter.Value; }
[5577]141    }
[5759]142    public PercentValue RelativeNumberOfEvaluatedSamples {
143      get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
144    }
145
146    public IntRange FitnessCalculationPartition {
147      get { return FitnessCalculationPartitionParameter.Value; }
148    }
[5775]149    public IntRange ValidationPartition {
[5883]150      get { return ValidationPartitionParameter.Value; }
[5759]151    }
[8664]152    public BoolValue ApplyLinearScaling {
153      get { return ApplyLinearScalingParameter.Value; }
154    }
[5577]155    #endregion
156
157    [StorableConstructor]
158    protected SymbolicDataAnalysisProblem(bool deserializing) : base(deserializing) { }
[5618]159    [StorableHook(HookType.AfterDeserialization)]
160    private void AfterDeserialization() {
[8664]161      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
162        Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
163        ApplyLinearScalingParameter.Hidden = true;
[8666]164
165        //it is assumed that for all symbolic regression algorithms linear scaling was set to true
166        //there is no possibility to determine the previous value of the parameter as it was stored in the evaluator
167        if (GetType().Name.Contains("SymbolicRegression"))
168          ApplyLinearScaling.Value = true;
[8664]169      }
170
[5618]171      RegisterEventHandlers();
172    }
173    protected SymbolicDataAnalysisProblem(SymbolicDataAnalysisProblem<T, U, V> original, Cloner cloner)
174      : base(original, cloner) {
175      RegisterEventHandlers();
176    }
[5577]177
[5618]178    protected SymbolicDataAnalysisProblem(T problemData, U evaluator, V solutionCreator)
179      : base(evaluator, solutionCreator) {
180      Parameters.Add(new ValueParameter<T>(ProblemDataParameterName, ProblemDataParameterDescription, problemData));
[5577]181      Parameters.Add(new ValueParameter<ISymbolicDataAnalysisGrammar>(SymbolicExpressionTreeGrammarParameterName, SymbolicExpressionTreeGrammarParameterDescription));
[5624]182      Parameters.Add(new ValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, SymoblicExpressionTreeInterpreterParameterDescription));
[5847]183      Parameters.Add(new FixedValueParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, MaximumSymbolicExpressionTreeDepthParameterDescription));
184      Parameters.Add(new FixedValueParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, MaximumSymbolicExpressionTreeLengthParameterDescription));
185      Parameters.Add(new FixedValueParameter<IntValue>(MaximumFunctionDefinitionsParameterName, MaximumFunctionDefinitionsParameterDescription));
186      Parameters.Add(new FixedValueParameter<IntValue>(MaximumFunctionArgumentsParameterName, MaximumFunctionArgumentsParameterDescription));
187      Parameters.Add(new FixedValueParameter<IntRange>(FitnessCalculationPartitionParameterName, FitnessCalculationPartitionParameterDescription));
188      Parameters.Add(new FixedValueParameter<IntRange>(ValidationPartitionParameterName, ValidationPartitionParameterDescription));
[5759]189      Parameters.Add(new FixedValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, RelativeNumberOfEvaluatedSamplesParameterDescription, new PercentValue(1)));
[8664]190      Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
[5618]191
[5854]192      SymbolicExpressionTreeInterpreterParameter.Hidden = true;
193      MaximumFunctionArgumentsParameter.Hidden = true;
194      MaximumFunctionDefinitionsParameter.Hidden = true;
[8664]195      ApplyLinearScalingParameter.Hidden = true;
[5854]196
[5618]197      SymbolicExpressionTreeGrammar = new TypeCoherentExpressionGrammar();
[9830]198      SymbolicExpressionTreeInterpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
[5618]199
[5770]200      FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
201      FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
202
[5722]203      InitializeOperators();
204
[5618]205      UpdateGrammar();
206      RegisterEventHandlers();
[5577]207    }
208
[5685]209    protected virtual void UpdateGrammar() {
[5726]210      SymbolicExpressionTreeGrammar.MaximumFunctionArguments = MaximumFunctionArguments.Value;
211      SymbolicExpressionTreeGrammar.MaximumFunctionDefinitions = MaximumFunctionDefinitions.Value;
[5685]212      foreach (var varSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.Variable>()) {
[8936]213        if (!varSymbol.Fixed) {
214          varSymbol.AllVariableNames = ProblemData.InputVariables.Select(x => x.Value);
215          varSymbol.VariableNames = ProblemData.AllowedInputVariables;
216        }
[5685]217      }
218      foreach (var varSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.VariableCondition>()) {
[8936]219        if (!varSymbol.Fixed) {
220          varSymbol.AllVariableNames = ProblemData.InputVariables.Select(x => x.Value);
221          varSymbol.VariableNames = ProblemData.AllowedInputVariables;
222        }
[5685]223      }
224    }
225
[5618]226    private void InitializeOperators() {
227      Operators.AddRange(ApplicationManager.Manager.GetInstances<ISymbolicExpressionTreeOperator>());
[7506]228      Operators.AddRange(ApplicationManager.Manager.GetInstances<ISymbolicDataAnalysisExpressionCrossover<T>>());
[5618]229      Operators.Add(new SymbolicExpressionSymbolFrequencyAnalyzer());
[5685]230      Operators.Add(new SymbolicDataAnalysisVariableFrequencyAnalyzer());
[5618]231      Operators.Add(new MinAverageMaxSymbolicExpressionTreeLengthAnalyzer());
[6978]232      Operators.Add(new SymbolicExpressionTreeLengthAnalyzer());
[12103]233      Operators.Add(new SymbolicExpressionTreeBottomUpSimilarityCalculator());
234      Operators.Add(new SymbolicDataAnalysisBottomUpDiversityAnalyzer(Operators.OfType<SymbolicExpressionTreeBottomUpSimilarityCalculator>().First()));
[5618]235      ParameterizeOperators();
236    }
237
[5685]238    #region events
[5618]239    private void RegisterEventHandlers() {
240      ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
241      ProblemDataParameter.Value.Changed += (object sender, EventArgs e) => OnProblemDataChanged();
242
[5841]243      SymbolicExpressionTreeGrammarParameter.ValueChanged += new EventHandler(SymbolicExpressionTreeGrammarParameter_ValueChanged);
244
[5618]245      MaximumFunctionArguments.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
246      MaximumFunctionDefinitions.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
247      MaximumSymbolicExpressionTreeDepth.ValueChanged += new EventHandler(MaximumSymbolicExpressionTreeDepth_ValueChanged);
248    }
249
[5685]250    private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
[5887]251      ValidationPartition.Start = 0;
252      ValidationPartition.End = 0;
[5685]253      ProblemDataParameter.Value.Changed += (object s, EventArgs args) => OnProblemDataChanged();
254      OnProblemDataChanged();
255    }
256
[5841]257    private void SymbolicExpressionTreeGrammarParameter_ValueChanged(object sender, EventArgs e) {
258      UpdateGrammar();
259    }
260
[5618]261    private void ArchitectureParameterValue_ValueChanged(object sender, EventArgs e) {
262      UpdateGrammar();
263    }
264
265    private void MaximumSymbolicExpressionTreeDepth_ValueChanged(object sender, EventArgs e) {
266      if (MaximumSymbolicExpressionTreeDepth != null && MaximumSymbolicExpressionTreeDepth.Value < 3)
267        MaximumSymbolicExpressionTreeDepth.Value = 3;
268    }
269
270    protected override void OnSolutionCreatorChanged() {
271      base.OnSolutionCreatorChanged();
272      SolutionCreator.SymbolicExpressionTreeParameter.ActualNameChanged += new EventHandler(SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged);
273      ParameterizeOperators();
274    }
[5685]275
[5618]276    private void SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged(object sender, EventArgs e) {
277      ParameterizeOperators();
278    }
279
280    protected override void OnEvaluatorChanged() {
281      base.OnEvaluatorChanged();
[5685]282      ParameterizeOperators();
[5618]283    }
284
[5577]285    public event EventHandler ProblemDataChanged;
286    protected virtual void OnProblemDataChanged() {
[5770]287      FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
288      FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
289
[5618]290      UpdateGrammar();
[5685]291      ParameterizeOperators();
292
[5577]293      var handler = ProblemDataChanged;
294      if (handler != null) handler(this, EventArgs.Empty);
[5618]295
296      OnReset();
[5577]297    }
[5685]298    #endregion
[5618]299
[5685]300    protected virtual void ParameterizeOperators() {
[7506]301      var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators).ToList();
[5618]302
303      foreach (var op in operators.OfType<ISymbolicExpressionTreeGrammarBasedOperator>()) {
[8664]304        op.SymbolicExpressionTreeGrammarParameter.ActualName = SymbolicExpressionTreeGrammarParameter.Name;
[5618]305      }
306      foreach (var op in operators.OfType<ISymbolicExpressionTreeSizeConstraintOperator>()) {
[8664]307        op.MaximumSymbolicExpressionTreeDepthParameter.ActualName = MaximumSymbolicExpressionTreeDepthParameter.Name;
308        op.MaximumSymbolicExpressionTreeLengthParameter.ActualName = MaximumSymbolicExpressionTreeLengthParameter.Name;
[5618]309      }
310      foreach (var op in operators.OfType<ISymbolicExpressionTreeArchitectureAlteringOperator>()) {
[8664]311        op.MaximumFunctionArgumentsParameter.ActualName = MaximumFunctionArgumentsParameter.Name;
312        op.MaximumFunctionDefinitionsParameter.ActualName = MaximumFunctionDefinitionsParameter.Name;
[5618]313      }
314      foreach (var op in operators.OfType<ISymbolicDataAnalysisEvaluator<T>>()) {
[5685]315        op.ProblemDataParameter.ActualName = ProblemDataParameterName;
[5618]316        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
[5759]317        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
318        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
[8664]319        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
[5618]320      }
321      foreach (var op in operators.OfType<ISymbolicExpressionTreeCrossover>()) {
322        op.ParentsParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
[12422]323        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
[5618]324      }
325      foreach (var op in operators.OfType<ISymbolicExpressionTreeManipulator>()) {
326        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
327      }
328      foreach (var op in operators.OfType<ISymbolicExpressionTreeAnalyzer>()) {
329        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
330      }
[8664]331      foreach (var op in operators.OfType<ISymbolicDataAnalysisSingleObjectiveAnalyzer>()) {
332        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
333      }
334      foreach (var op in operators.OfType<ISymbolicDataAnalysisMultiObjectiveAnalyzer>()) {
335        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
336      }
[6135]337      foreach (var op in operators.OfType<ISymbolicDataAnalysisAnalyzer>()) {
338        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
339      }
[5759]340      foreach (var op in operators.OfType<ISymbolicDataAnalysisValidationAnalyzer<U, T>>()) {
341        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
[5883]342        op.ValidationPartitionParameter.ActualName = ValidationPartitionParameter.Name;
[5759]343      }
[5685]344      foreach (var op in operators.OfType<ISymbolicDataAnalysisInterpreterOperator>()) {
[8664]345        op.SymbolicDataAnalysisTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
[5685]346      }
[7506]347      foreach (var op in operators.OfType<ISymbolicDataAnalysisExpressionCrossover<T>>()) {
[8664]348        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
[7506]349        op.ProblemDataParameter.ActualName = ProblemDataParameter.Name;
350        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
351        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
352        op.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
353      }
[5618]354    }
[5623]355
[7823]356    #region Import & Export
[9452]357    public virtual void Load(T data) {
[7823]358      Name = data.Name;
359      Description = data.Description;
360      ProblemData = data;
361    }
362
[9452]363    public virtual T Export() {
[7823]364      return ProblemData;
365    }
366    #endregion
[5577]367  }
368}
Note: See TracBrowser for help on using the repository browser.