[5624] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5624] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8664] | 22 | using System;
|
---|
[13921] | 23 | using System.Collections.Generic;
|
---|
[5914] | 24 | using System.Drawing;
|
---|
[13921] | 25 | using System.Linq;
|
---|
[5624] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 32 | /// <summary>
|
---|
[5717] | 33 | /// Abstract base class for symbolic data analysis models
|
---|
[5624] | 34 | /// </summary>
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public abstract class SymbolicDataAnalysisModel : NamedItem, ISymbolicDataAnalysisModel {
|
---|
[7201] | 37 | public static new Image StaticItemImage {
|
---|
[5649] | 38 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
[5624] | 41 | #region properties
|
---|
[9587] | 42 | [Storable]
|
---|
| 43 | private double lowerEstimationLimit;
|
---|
| 44 | public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
|
---|
| 45 | [Storable]
|
---|
| 46 | private double upperEstimationLimit;
|
---|
| 47 | public double UpperEstimationLimit { get { return upperEstimationLimit; } }
|
---|
[5624] | 48 |
|
---|
| 49 | [Storable]
|
---|
| 50 | private ISymbolicExpressionTree symbolicExpressionTree;
|
---|
| 51 | public ISymbolicExpressionTree SymbolicExpressionTree {
|
---|
| 52 | get { return symbolicExpressionTree; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | [Storable]
|
---|
| 56 | private ISymbolicDataAnalysisExpressionTreeInterpreter interpreter;
|
---|
| 57 | public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter {
|
---|
| 58 | get { return interpreter; }
|
---|
| 59 | }
|
---|
[13921] | 60 |
|
---|
| 61 | public IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 62 | get {
|
---|
[13941] | 63 | var variables =
|
---|
[13921] | 64 | SymbolicExpressionTree.IterateNodesPrefix()
|
---|
| 65 | .OfType<VariableTreeNode>()
|
---|
| 66 | .Select(x => x.VariableName)
|
---|
[13941] | 67 | .Distinct();
|
---|
| 68 | var variableConditions = SymbolicExpressionTree.IterateNodesPrefix()
|
---|
| 69 | .OfType<VariableConditionTreeNode>().Select(x => x.VariableName).Distinct();
|
---|
| 70 |
|
---|
| 71 | return variables.Union(variableConditions).OrderBy(x => x);
|
---|
[13921] | 72 | }
|
---|
| 73 | }
|
---|
| 74 |
|
---|
[5624] | 75 | #endregion
|
---|
| 76 |
|
---|
| 77 | [StorableConstructor]
|
---|
| 78 | protected SymbolicDataAnalysisModel(bool deserializing) : base(deserializing) { }
|
---|
| 79 | protected SymbolicDataAnalysisModel(SymbolicDataAnalysisModel original, Cloner cloner)
|
---|
| 80 | : base(original, cloner) {
|
---|
| 81 | this.symbolicExpressionTree = cloner.Clone(original.symbolicExpressionTree);
|
---|
| 82 | this.interpreter = cloner.Clone(original.interpreter);
|
---|
[9587] | 83 | this.lowerEstimationLimit = original.lowerEstimationLimit;
|
---|
| 84 | this.upperEstimationLimit = original.upperEstimationLimit;
|
---|
[5624] | 85 | }
|
---|
[9587] | 86 | protected SymbolicDataAnalysisModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 87 | double lowerEstimationLimit, double upperEstimationLimit)
|
---|
[5624] | 88 | : base() {
|
---|
[5649] | 89 | this.name = ItemName;
|
---|
| 90 | this.description = ItemDescription;
|
---|
[5624] | 91 | this.symbolicExpressionTree = tree;
|
---|
| 92 | this.interpreter = interpreter;
|
---|
[9587] | 93 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
| 94 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
[5624] | 95 | }
|
---|
[8664] | 96 |
|
---|
| 97 | #region Scaling
|
---|
[8972] | 98 | protected void Scale(IDataAnalysisProblemData problemData, string targetVariable) {
|
---|
[8664] | 99 | var dataset = problemData.Dataset;
|
---|
| 100 | var rows = problemData.TrainingIndices;
|
---|
[8972] | 101 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows);
|
---|
[8664] | 102 | var targetValues = dataset.GetDoubleValues(targetVariable, rows);
|
---|
| 103 |
|
---|
| 104 | var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
|
---|
| 105 | var targetValuesEnumerator = targetValues.GetEnumerator();
|
---|
| 106 | var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
|
---|
| 107 | while (targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
|
---|
| 108 | double target = targetValuesEnumerator.Current;
|
---|
| 109 | double estimated = estimatedValuesEnumerator.Current;
|
---|
| 110 | if (!double.IsNaN(estimated) && !double.IsInfinity(estimated))
|
---|
| 111 | linearScalingCalculator.Add(estimated, target);
|
---|
| 112 | }
|
---|
| 113 | if (linearScalingCalculator.ErrorState == OnlineCalculatorError.None && (targetValuesEnumerator.MoveNext() || estimatedValuesEnumerator.MoveNext()))
|
---|
| 114 | throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
|
---|
| 115 |
|
---|
| 116 | double alpha = linearScalingCalculator.Alpha;
|
---|
| 117 | double beta = linearScalingCalculator.Beta;
|
---|
| 118 | if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) return;
|
---|
| 119 |
|
---|
| 120 | ConstantTreeNode alphaTreeNode = null;
|
---|
| 121 | ConstantTreeNode betaTreeNode = null;
|
---|
| 122 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
[8972] | 123 | var startNode = SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
[8664] | 124 | if (startNode.GetSubtree(0).Symbol is Addition) {
|
---|
| 125 | var addNode = startNode.GetSubtree(0);
|
---|
| 126 | if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 127 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 128 | var mulNode = addNode.GetSubtree(0);
|
---|
| 129 | if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 130 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
| 135 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
| 136 | betaTreeNode.Value *= beta;
|
---|
| 137 | alphaTreeNode.Value *= beta;
|
---|
| 138 | alphaTreeNode.Value += alpha;
|
---|
| 139 | } else {
|
---|
| 140 | var mainBranch = startNode.GetSubtree(0);
|
---|
| 141 | startNode.RemoveSubtree(0);
|
---|
| 142 | var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
|
---|
| 143 | startNode.AddSubtree(scaledMainBranch);
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
| 148 | if (alpha.IsAlmost(0.0)) {
|
---|
| 149 | return treeNode;
|
---|
| 150 | } else {
|
---|
| 151 | var addition = new Addition();
|
---|
| 152 | var node = addition.CreateTreeNode();
|
---|
| 153 | var alphaConst = MakeConstant(alpha);
|
---|
| 154 | node.AddSubtree(treeNode);
|
---|
| 155 | node.AddSubtree(alphaConst);
|
---|
| 156 | return node;
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
|
---|
| 161 | if (beta.IsAlmost(1.0)) {
|
---|
| 162 | return treeNode;
|
---|
| 163 | } else {
|
---|
| 164 | var multipliciation = new Multiplication();
|
---|
| 165 | var node = multipliciation.CreateTreeNode();
|
---|
| 166 | var betaConst = MakeConstant(beta);
|
---|
| 167 | node.AddSubtree(treeNode);
|
---|
| 168 | node.AddSubtree(betaConst);
|
---|
| 169 | return node;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
| 174 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 175 | node.Value = c;
|
---|
| 176 | return node;
|
---|
| 177 | }
|
---|
| 178 | #endregion
|
---|
[13921] | 179 |
|
---|
[5624] | 180 | }
|
---|
| 181 | }
|
---|