Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Evaluators/SymbolicDataAnalysisEvaluator.cs @ 8694

Last change on this file since 8694 was 8664, checked in by mkommend, 12 years ago

#1951:

  • Added linear scaling parameter to data analysis problems.
  • Adapted interfaces, evaluators and analyzers accordingly.
  • Added OnlineBoundedMeanSquaredErrorCalculator.
  • Adapted symbolic regression sample unit test.
File size: 9.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Random;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
35  [StorableClass]
36  public abstract class SymbolicDataAnalysisEvaluator<T> : SingleSuccessorOperator,
37    ISymbolicDataAnalysisEvaluator<T>, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator
38  where T : class, IDataAnalysisProblemData {
39    private const string RandomParameterName = "Random";
40    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
41    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
42    private const string ProblemDataParameterName = "ProblemData";
43    private const string EstimationLimitsParameterName = "EstimationLimits";
44    private const string EvaluationPartitionParameterName = "EvaluationPartition";
45    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
46    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
47
48    public override bool CanChangeName { get { return false; } }
49
50    #region parameter properties
51    public IValueLookupParameter<IRandom> RandomParameter {
52      get { return (IValueLookupParameter<IRandom>)Parameters[RandomParameterName]; }
53    }
54    public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
55      get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
56    }
57    public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
58      get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
59    }
60    public IValueLookupParameter<T> ProblemDataParameter {
61      get { return (IValueLookupParameter<T>)Parameters[ProblemDataParameterName]; }
62    }
63
64    public IValueLookupParameter<IntRange> EvaluationPartitionParameter {
65      get { return (IValueLookupParameter<IntRange>)Parameters[EvaluationPartitionParameterName]; }
66    }
67    public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
68      get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
69    }
70    public IValueLookupParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
71      get { return (IValueLookupParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
72    }
73    public ILookupParameter<BoolValue> ApplyLinearScalingParameter {
74      get { return (ILookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
75    }
76    #endregion
77
78
79    [StorableConstructor]
80    protected SymbolicDataAnalysisEvaluator(bool deserializing) : base(deserializing) { }
81    protected SymbolicDataAnalysisEvaluator(SymbolicDataAnalysisEvaluator<T> original, Cloner cloner)
82      : base(original, cloner) {
83    }
84    public SymbolicDataAnalysisEvaluator()
85      : base() {
86      Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
87      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
88      Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree."));
89      Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
90      Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
91      Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees."));
92      Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
93      Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
94    }
95
96    [StorableHook(HookType.AfterDeserialization)]
97    private void AfterDeserialization() {
98      if (Parameters.ContainsKey(ApplyLinearScalingParameterName) && !(Parameters[ApplyLinearScalingParameterName] is LookupParameter<BoolValue>))
99        Parameters.Remove(ApplyLinearScalingParameterName);
100      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName))
101        Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
102    }
103
104    protected IEnumerable<int> GenerateRowsToEvaluate() {
105      return GenerateRowsToEvaluate(RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
106    }
107
108    protected IEnumerable<int> GenerateRowsToEvaluate(double percentageOfRows) {
109      IEnumerable<int> rows;
110      int samplesStart = EvaluationPartitionParameter.ActualValue.Start;
111      int samplesEnd = EvaluationPartitionParameter.ActualValue.End;
112      int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
113      int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
114
115      if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
116
117      if (percentageOfRows.IsAlmost(1.0))
118        rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
119      else {
120        int seed = RandomParameter.ActualValue.Next();
121        int count = (int)((samplesEnd - samplesStart) * percentageOfRows);
122        if (count == 0) count = 1;
123        rows = RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count);
124      }
125
126      return rows.Where(i => i < testPartitionStart || testPartitionEnd <= i);
127    }
128
129    [ThreadStatic]
130    private static double[] cache;
131    protected static void CalculateWithScaling(IEnumerable<double> targetValues, IEnumerable<double> estimatedValues,
132      double lowerEstimationLimit, double upperEstimationLimit,
133      IOnlineCalculator calculator, int maxRows) {
134      if (cache == null || cache.GetLength(0) < maxRows) {
135        cache = new double[maxRows];
136      }
137
138      //calculate linear scaling
139      //the static methods of the calculator could not be used as it performs a check if the enumerators have an equal amount of elements
140      //this is not true if the cache is used
141      int i = 0;
142      var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
143      var targetValuesEnumerator = targetValues.GetEnumerator();
144      var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
145      while (targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
146        double target = targetValuesEnumerator.Current;
147        double estimated = estimatedValuesEnumerator.Current;
148        cache[i] = estimated;
149        if (!double.IsNaN(estimated) && !double.IsInfinity(estimated))
150          linearScalingCalculator.Add(estimated, target);
151        i++;
152      }
153      if (linearScalingCalculator.ErrorState == OnlineCalculatorError.None && (targetValuesEnumerator.MoveNext() || estimatedValuesEnumerator.MoveNext()))
154        throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
155
156      double alpha = linearScalingCalculator.Alpha;
157      double beta = linearScalingCalculator.Beta;
158      if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) {
159        alpha = 0.0;
160        beta = 1.0;
161      }
162
163      //calculate the quality by using the passed online calculator
164      targetValuesEnumerator = targetValues.GetEnumerator();
165      var scaledBoundedEstimatedValuesEnumerator = Enumerable.Range(0, i).Select(x => cache[x] * beta + alpha)
166        .LimitToRange(lowerEstimationLimit, upperEstimationLimit).GetEnumerator();
167
168      while (targetValuesEnumerator.MoveNext() & scaledBoundedEstimatedValuesEnumerator.MoveNext()) {
169        calculator.Add(targetValuesEnumerator.Current, scaledBoundedEstimatedValuesEnumerator.Current);
170      }
171    }
172  }
173}
Note: See TracBrowser for help on using the repository browser.