[14843] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14843] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[14950] | 25 | using System.Runtime.Serialization;
|
---|
[14843] | 26 | using AutoDiff;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 30 | public class TreeToAutoDiffTermConverter {
|
---|
| 31 | public delegate double ParametricFunction(double[] vars, double[] @params);
|
---|
[14950] | 32 |
|
---|
[14843] | 33 | public delegate Tuple<double[], double> ParametricFunctionGradient(double[] vars, double[] @params);
|
---|
| 34 |
|
---|
| 35 | #region helper class
|
---|
| 36 | public class DataForVariable {
|
---|
| 37 | public readonly string variableName;
|
---|
| 38 | public readonly string variableValue; // for factor vars
|
---|
| 39 | public readonly int lag;
|
---|
| 40 |
|
---|
| 41 | public DataForVariable(string varName, string varValue, int lag) {
|
---|
| 42 | this.variableName = varName;
|
---|
| 43 | this.variableValue = varValue;
|
---|
| 44 | this.lag = lag;
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public override bool Equals(object obj) {
|
---|
| 48 | var other = obj as DataForVariable;
|
---|
| 49 | if (other == null) return false;
|
---|
| 50 | return other.variableName.Equals(this.variableName) &&
|
---|
| 51 | other.variableValue.Equals(this.variableValue) &&
|
---|
| 52 | other.lag == this.lag;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override int GetHashCode() {
|
---|
| 56 | return variableName.GetHashCode() ^ variableValue.GetHashCode() ^ lag;
|
---|
| 57 | }
|
---|
| 58 | }
|
---|
| 59 | #endregion
|
---|
| 60 |
|
---|
| 61 | #region derivations of functions
|
---|
| 62 | // create function factory for arctangent
|
---|
| 63 | private static readonly Func<Term, UnaryFunc> arctan = UnaryFunc.Factory(
|
---|
| 64 | eval: Math.Atan,
|
---|
| 65 | diff: x => 1 / (1 + x * x));
|
---|
[14950] | 66 |
|
---|
[14843] | 67 | private static readonly Func<Term, UnaryFunc> sin = UnaryFunc.Factory(
|
---|
| 68 | eval: Math.Sin,
|
---|
| 69 | diff: Math.Cos);
|
---|
[14950] | 70 |
|
---|
[14843] | 71 | private static readonly Func<Term, UnaryFunc> cos = UnaryFunc.Factory(
|
---|
[14950] | 72 | eval: Math.Cos,
|
---|
| 73 | diff: x => -Math.Sin(x));
|
---|
| 74 |
|
---|
[14843] | 75 | private static readonly Func<Term, UnaryFunc> tan = UnaryFunc.Factory(
|
---|
| 76 | eval: Math.Tan,
|
---|
| 77 | diff: x => 1 + Math.Tan(x) * Math.Tan(x));
|
---|
[14950] | 78 |
|
---|
[14843] | 79 | private static readonly Func<Term, UnaryFunc> erf = UnaryFunc.Factory(
|
---|
| 80 | eval: alglib.errorfunction,
|
---|
| 81 | diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
|
---|
[14950] | 82 |
|
---|
[14843] | 83 | private static readonly Func<Term, UnaryFunc> norm = UnaryFunc.Factory(
|
---|
| 84 | eval: alglib.normaldistribution,
|
---|
| 85 | diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
|
---|
| 86 |
|
---|
| 87 | #endregion
|
---|
| 88 |
|
---|
[15447] | 89 | public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable, bool addLinearScalingTerms,
|
---|
[14843] | 90 | out List<DataForVariable> parameters, out double[] initialConstants,
|
---|
| 91 | out ParametricFunction func,
|
---|
| 92 | out ParametricFunctionGradient func_grad) {
|
---|
| 93 |
|
---|
| 94 | // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
|
---|
[15447] | 95 | var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable, addLinearScalingTerms);
|
---|
[14843] | 96 | AutoDiff.Term term;
|
---|
[14950] | 97 | try {
|
---|
| 98 | term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0));
|
---|
[14843] | 99 | var parameterEntries = transformator.parameters.ToArray(); // guarantee same order for keys and values
|
---|
[14950] | 100 | var compiledTerm = term.Compile(transformator.variables.ToArray(),
|
---|
| 101 | parameterEntries.Select(kvp => kvp.Value).ToArray());
|
---|
[14843] | 102 | parameters = new List<DataForVariable>(parameterEntries.Select(kvp => kvp.Key));
|
---|
| 103 | initialConstants = transformator.initialConstants.ToArray();
|
---|
| 104 | func = (vars, @params) => compiledTerm.Evaluate(vars, @params);
|
---|
| 105 | func_grad = (vars, @params) => compiledTerm.Differentiate(vars, @params);
|
---|
[14950] | 106 | return true;
|
---|
| 107 | } catch (ConversionException) {
|
---|
[14843] | 108 | func = null;
|
---|
| 109 | func_grad = null;
|
---|
| 110 | parameters = null;
|
---|
| 111 | initialConstants = null;
|
---|
| 112 | }
|
---|
[14950] | 113 | return false;
|
---|
[14843] | 114 | }
|
---|
| 115 |
|
---|
| 116 | // state for recursive transformation of trees
|
---|
[14950] | 117 | private readonly
|
---|
| 118 | List<double> initialConstants;
|
---|
[14843] | 119 | private readonly Dictionary<DataForVariable, AutoDiff.Variable> parameters;
|
---|
| 120 | private readonly List<AutoDiff.Variable> variables;
|
---|
| 121 | private readonly bool makeVariableWeightsVariable;
|
---|
[15447] | 122 | private readonly bool addLinearScalingTerms;
|
---|
[14843] | 123 |
|
---|
[15447] | 124 | private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable, bool addLinearScalingTerms) {
|
---|
[14843] | 125 | this.makeVariableWeightsVariable = makeVariableWeightsVariable;
|
---|
[15447] | 126 | this.addLinearScalingTerms = addLinearScalingTerms;
|
---|
[14843] | 127 | this.initialConstants = new List<double>();
|
---|
| 128 | this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
|
---|
| 129 | this.variables = new List<AutoDiff.Variable>();
|
---|
| 130 | }
|
---|
| 131 |
|
---|
[14950] | 132 | private AutoDiff.Term ConvertToAutoDiff(ISymbolicExpressionTreeNode node) {
|
---|
[14843] | 133 | if (node.Symbol is Constant) {
|
---|
| 134 | initialConstants.Add(((ConstantTreeNode)node).Value);
|
---|
| 135 | var var = new AutoDiff.Variable();
|
---|
| 136 | variables.Add(var);
|
---|
[14950] | 137 | return var;
|
---|
[14843] | 138 | }
|
---|
| 139 | if (node.Symbol is Variable || node.Symbol is BinaryFactorVariable) {
|
---|
| 140 | var varNode = node as VariableTreeNodeBase;
|
---|
| 141 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
| 142 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
| 143 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
| 144 | var par = FindOrCreateParameter(parameters, varNode.VariableName, varValue);
|
---|
| 145 |
|
---|
| 146 | if (makeVariableWeightsVariable) {
|
---|
| 147 | initialConstants.Add(varNode.Weight);
|
---|
| 148 | var w = new AutoDiff.Variable();
|
---|
| 149 | variables.Add(w);
|
---|
[14950] | 150 | return AutoDiff.TermBuilder.Product(w, par);
|
---|
[14843] | 151 | } else {
|
---|
[14950] | 152 | return varNode.Weight * par;
|
---|
[14843] | 153 | }
|
---|
| 154 | }
|
---|
| 155 | if (node.Symbol is FactorVariable) {
|
---|
| 156 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
| 157 | var products = new List<Term>();
|
---|
| 158 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) {
|
---|
| 159 | var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue);
|
---|
| 160 |
|
---|
| 161 | initialConstants.Add(factorVarNode.GetValue(variableValue));
|
---|
| 162 | var wVar = new AutoDiff.Variable();
|
---|
| 163 | variables.Add(wVar);
|
---|
| 164 |
|
---|
| 165 | products.Add(AutoDiff.TermBuilder.Product(wVar, par));
|
---|
| 166 | }
|
---|
[14950] | 167 | return AutoDiff.TermBuilder.Sum(products);
|
---|
[14843] | 168 | }
|
---|
| 169 | if (node.Symbol is LaggedVariable) {
|
---|
| 170 | var varNode = node as LaggedVariableTreeNode;
|
---|
| 171 | var par = FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag);
|
---|
| 172 |
|
---|
| 173 | if (makeVariableWeightsVariable) {
|
---|
| 174 | initialConstants.Add(varNode.Weight);
|
---|
| 175 | var w = new AutoDiff.Variable();
|
---|
| 176 | variables.Add(w);
|
---|
[14950] | 177 | return AutoDiff.TermBuilder.Product(w, par);
|
---|
[14843] | 178 | } else {
|
---|
[14950] | 179 | return varNode.Weight * par;
|
---|
[14843] | 180 | }
|
---|
| 181 | }
|
---|
| 182 | if (node.Symbol is Addition) {
|
---|
| 183 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 184 | foreach (var subTree in node.Subtrees) {
|
---|
[14950] | 185 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
[14843] | 186 | }
|
---|
[14950] | 187 | return AutoDiff.TermBuilder.Sum(terms);
|
---|
[14843] | 188 | }
|
---|
| 189 | if (node.Symbol is Subtraction) {
|
---|
| 190 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 191 | for (int i = 0; i < node.SubtreeCount; i++) {
|
---|
[14950] | 192 | AutoDiff.Term t = ConvertToAutoDiff(node.GetSubtree(i));
|
---|
[14843] | 193 | if (i > 0) t = -t;
|
---|
| 194 | terms.Add(t);
|
---|
| 195 | }
|
---|
[14950] | 196 | if (terms.Count == 1) return -terms[0];
|
---|
| 197 | else return AutoDiff.TermBuilder.Sum(terms);
|
---|
[14843] | 198 | }
|
---|
| 199 | if (node.Symbol is Multiplication) {
|
---|
| 200 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 201 | foreach (var subTree in node.Subtrees) {
|
---|
[14950] | 202 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
[14843] | 203 | }
|
---|
[14950] | 204 | if (terms.Count == 1) return terms[0];
|
---|
| 205 | else return terms.Aggregate((a, b) => new AutoDiff.Product(a, b));
|
---|
[14843] | 206 | }
|
---|
| 207 | if (node.Symbol is Division) {
|
---|
| 208 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 209 | foreach (var subTree in node.Subtrees) {
|
---|
[14950] | 210 | terms.Add(ConvertToAutoDiff(subTree));
|
---|
[14843] | 211 | }
|
---|
[14950] | 212 | if (terms.Count == 1) return 1.0 / terms[0];
|
---|
| 213 | else return terms.Aggregate((a, b) => new AutoDiff.Product(a, 1.0 / b));
|
---|
[14843] | 214 | }
|
---|
| 215 | if (node.Symbol is Logarithm) {
|
---|
[14950] | 216 | return AutoDiff.TermBuilder.Log(
|
---|
| 217 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 218 | }
|
---|
| 219 | if (node.Symbol is Exponential) {
|
---|
[14950] | 220 | return AutoDiff.TermBuilder.Exp(
|
---|
| 221 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 222 | }
|
---|
| 223 | if (node.Symbol is Square) {
|
---|
[14950] | 224 | return AutoDiff.TermBuilder.Power(
|
---|
| 225 | ConvertToAutoDiff(node.GetSubtree(0)), 2.0);
|
---|
[14843] | 226 | }
|
---|
| 227 | if (node.Symbol is SquareRoot) {
|
---|
[14950] | 228 | return AutoDiff.TermBuilder.Power(
|
---|
| 229 | ConvertToAutoDiff(node.GetSubtree(0)), 0.5);
|
---|
[14843] | 230 | }
|
---|
| 231 | if (node.Symbol is Sine) {
|
---|
[14950] | 232 | return sin(
|
---|
| 233 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 234 | }
|
---|
| 235 | if (node.Symbol is Cosine) {
|
---|
[14950] | 236 | return cos(
|
---|
| 237 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 238 | }
|
---|
| 239 | if (node.Symbol is Tangent) {
|
---|
[14950] | 240 | return tan(
|
---|
| 241 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 242 | }
|
---|
| 243 | if (node.Symbol is Erf) {
|
---|
[14950] | 244 | return erf(
|
---|
| 245 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 246 | }
|
---|
| 247 | if (node.Symbol is Norm) {
|
---|
[14950] | 248 | return norm(
|
---|
| 249 | ConvertToAutoDiff(node.GetSubtree(0)));
|
---|
[14843] | 250 | }
|
---|
| 251 | if (node.Symbol is StartSymbol) {
|
---|
[15447] | 252 | if (addLinearScalingTerms) {
|
---|
[15481] | 253 | // scaling variables α, β are given at the beginning of the parameter vector
|
---|
[15447] | 254 | var alpha = new AutoDiff.Variable();
|
---|
| 255 | var beta = new AutoDiff.Variable();
|
---|
| 256 | variables.Add(beta);
|
---|
| 257 | variables.Add(alpha);
|
---|
[15481] | 258 | var t = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
[15480] | 259 | return t * alpha + beta;
|
---|
[15447] | 260 | } else return ConvertToAutoDiff(node.GetSubtree(0));
|
---|
[14843] | 261 | }
|
---|
[14950] | 262 | throw new ConversionException();
|
---|
[14843] | 263 | }
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 | // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination
|
---|
| 267 | // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available
|
---|
| 268 | private static Term FindOrCreateParameter(Dictionary<DataForVariable, AutoDiff.Variable> parameters,
|
---|
| 269 | string varName, string varValue = "", int lag = 0) {
|
---|
| 270 | var data = new DataForVariable(varName, varValue, lag);
|
---|
| 271 |
|
---|
| 272 | AutoDiff.Variable par = null;
|
---|
| 273 | if (!parameters.TryGetValue(data, out par)) {
|
---|
| 274 | // not found -> create new parameter and entries in names and values lists
|
---|
| 275 | par = new AutoDiff.Variable();
|
---|
| 276 | parameters.Add(data, par);
|
---|
| 277 | }
|
---|
| 278 | return par;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | public static bool IsCompatible(ISymbolicExpressionTree tree) {
|
---|
| 282 | var containsUnknownSymbol = (
|
---|
| 283 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
| 284 | where
|
---|
[14950] | 285 | !(n.Symbol is Variable) &&
|
---|
| 286 | !(n.Symbol is BinaryFactorVariable) &&
|
---|
| 287 | !(n.Symbol is FactorVariable) &&
|
---|
| 288 | !(n.Symbol is LaggedVariable) &&
|
---|
| 289 | !(n.Symbol is Constant) &&
|
---|
| 290 | !(n.Symbol is Addition) &&
|
---|
| 291 | !(n.Symbol is Subtraction) &&
|
---|
| 292 | !(n.Symbol is Multiplication) &&
|
---|
| 293 | !(n.Symbol is Division) &&
|
---|
| 294 | !(n.Symbol is Logarithm) &&
|
---|
| 295 | !(n.Symbol is Exponential) &&
|
---|
| 296 | !(n.Symbol is SquareRoot) &&
|
---|
| 297 | !(n.Symbol is Square) &&
|
---|
| 298 | !(n.Symbol is Sine) &&
|
---|
| 299 | !(n.Symbol is Cosine) &&
|
---|
| 300 | !(n.Symbol is Tangent) &&
|
---|
| 301 | !(n.Symbol is Erf) &&
|
---|
| 302 | !(n.Symbol is Norm) &&
|
---|
| 303 | !(n.Symbol is StartSymbol)
|
---|
[14843] | 304 | select n).Any();
|
---|
| 305 | return !containsUnknownSymbol;
|
---|
| 306 | }
|
---|
[14950] | 307 | #region exception class
|
---|
| 308 | [Serializable]
|
---|
| 309 | public class ConversionException : Exception {
|
---|
| 310 |
|
---|
| 311 | public ConversionException() {
|
---|
| 312 | }
|
---|
| 313 |
|
---|
| 314 | public ConversionException(string message) : base(message) {
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | public ConversionException(string message, Exception inner) : base(message, inner) {
|
---|
| 318 | }
|
---|
| 319 |
|
---|
| 320 | protected ConversionException(
|
---|
| 321 | SerializationInfo info,
|
---|
| 322 | StreamingContext context) : base(info, context) {
|
---|
| 323 | }
|
---|
| 324 | }
|
---|
| 325 | #endregion
|
---|
[14843] | 326 | }
|
---|
| 327 | }
|
---|