[14843] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using AutoDiff;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 29 | public class TreeToAutoDiffTermConverter {
|
---|
| 30 | public delegate double ParametricFunction(double[] vars, double[] @params);
|
---|
| 31 | public delegate Tuple<double[], double> ParametricFunctionGradient(double[] vars, double[] @params);
|
---|
| 32 |
|
---|
| 33 | #region helper class
|
---|
| 34 | public class DataForVariable {
|
---|
| 35 | public readonly string variableName;
|
---|
| 36 | public readonly string variableValue; // for factor vars
|
---|
| 37 | public readonly int lag;
|
---|
| 38 |
|
---|
| 39 | public DataForVariable(string varName, string varValue, int lag) {
|
---|
| 40 | this.variableName = varName;
|
---|
| 41 | this.variableValue = varValue;
|
---|
| 42 | this.lag = lag;
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | public override bool Equals(object obj) {
|
---|
| 46 | var other = obj as DataForVariable;
|
---|
| 47 | if (other == null) return false;
|
---|
| 48 | return other.variableName.Equals(this.variableName) &&
|
---|
| 49 | other.variableValue.Equals(this.variableValue) &&
|
---|
| 50 | other.lag == this.lag;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public override int GetHashCode() {
|
---|
| 54 | return variableName.GetHashCode() ^ variableValue.GetHashCode() ^ lag;
|
---|
| 55 | }
|
---|
| 56 | }
|
---|
| 57 | #endregion
|
---|
| 58 |
|
---|
| 59 | #region derivations of functions
|
---|
| 60 | // create function factory for arctangent
|
---|
| 61 | private static readonly Func<Term, UnaryFunc> arctan = UnaryFunc.Factory(
|
---|
| 62 | eval: Math.Atan,
|
---|
| 63 | diff: x => 1 / (1 + x * x));
|
---|
| 64 | private static readonly Func<Term, UnaryFunc> sin = UnaryFunc.Factory(
|
---|
| 65 | eval: Math.Sin,
|
---|
| 66 | diff: Math.Cos);
|
---|
| 67 | private static readonly Func<Term, UnaryFunc> cos = UnaryFunc.Factory(
|
---|
| 68 | eval: Math.Cos,
|
---|
| 69 | diff: x => -Math.Sin(x));
|
---|
| 70 | private static readonly Func<Term, UnaryFunc> tan = UnaryFunc.Factory(
|
---|
| 71 | eval: Math.Tan,
|
---|
| 72 | diff: x => 1 + Math.Tan(x) * Math.Tan(x));
|
---|
| 73 | private static readonly Func<Term, UnaryFunc> erf = UnaryFunc.Factory(
|
---|
| 74 | eval: alglib.errorfunction,
|
---|
| 75 | diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
|
---|
| 76 | private static readonly Func<Term, UnaryFunc> norm = UnaryFunc.Factory(
|
---|
| 77 | eval: alglib.normaldistribution,
|
---|
| 78 | diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
|
---|
| 79 |
|
---|
| 80 | #endregion
|
---|
| 81 |
|
---|
| 82 | public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable,
|
---|
| 83 | out List<DataForVariable> parameters, out double[] initialConstants,
|
---|
| 84 | out ParametricFunction func,
|
---|
| 85 | out ParametricFunctionGradient func_grad) {
|
---|
| 86 |
|
---|
| 87 | // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
|
---|
| 88 | var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable);
|
---|
| 89 | AutoDiff.Term term;
|
---|
| 90 | var success = transformator.TryConvertToAutoDiff(tree.Root.GetSubtree(0), out term);
|
---|
| 91 | if (success) {
|
---|
| 92 | var parameterEntries = transformator.parameters.ToArray(); // guarantee same order for keys and values
|
---|
| 93 | var compiledTerm = term.Compile(transformator.variables.ToArray(), parameterEntries.Select(kvp => kvp.Value).ToArray());
|
---|
| 94 | parameters = new List<DataForVariable>(parameterEntries.Select(kvp => kvp.Key));
|
---|
| 95 | initialConstants = transformator.initialConstants.ToArray();
|
---|
| 96 | func = (vars, @params) => compiledTerm.Evaluate(vars, @params);
|
---|
| 97 | func_grad = (vars, @params) => compiledTerm.Differentiate(vars, @params);
|
---|
| 98 | } else {
|
---|
| 99 | func = null;
|
---|
| 100 | func_grad = null;
|
---|
| 101 | parameters = null;
|
---|
| 102 | initialConstants = null;
|
---|
| 103 | }
|
---|
| 104 | return success;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | // state for recursive transformation of trees
|
---|
| 108 | private readonly List<double> initialConstants;
|
---|
| 109 | private readonly Dictionary<DataForVariable, AutoDiff.Variable> parameters;
|
---|
| 110 | private readonly List<AutoDiff.Variable> variables;
|
---|
| 111 | private readonly bool makeVariableWeightsVariable;
|
---|
| 112 |
|
---|
| 113 | private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable) {
|
---|
| 114 | this.makeVariableWeightsVariable = makeVariableWeightsVariable;
|
---|
| 115 | this.initialConstants = new List<double>();
|
---|
| 116 | this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
|
---|
| 117 | this.variables = new List<AutoDiff.Variable>();
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | private bool TryConvertToAutoDiff(ISymbolicExpressionTreeNode node, out AutoDiff.Term term) {
|
---|
| 121 | if (node.Symbol is Constant) {
|
---|
| 122 | initialConstants.Add(((ConstantTreeNode)node).Value);
|
---|
| 123 | var var = new AutoDiff.Variable();
|
---|
| 124 | variables.Add(var);
|
---|
| 125 | term = var;
|
---|
| 126 | return true;
|
---|
| 127 | }
|
---|
| 128 | if (node.Symbol is Variable || node.Symbol is BinaryFactorVariable) {
|
---|
| 129 | var varNode = node as VariableTreeNodeBase;
|
---|
| 130 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
| 131 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
| 132 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
| 133 | var par = FindOrCreateParameter(parameters, varNode.VariableName, varValue);
|
---|
| 134 |
|
---|
| 135 | if (makeVariableWeightsVariable) {
|
---|
| 136 | initialConstants.Add(varNode.Weight);
|
---|
| 137 | var w = new AutoDiff.Variable();
|
---|
| 138 | variables.Add(w);
|
---|
| 139 | term = AutoDiff.TermBuilder.Product(w, par);
|
---|
| 140 | } else {
|
---|
| 141 | term = varNode.Weight * par;
|
---|
| 142 | }
|
---|
| 143 | return true;
|
---|
| 144 | }
|
---|
| 145 | if (node.Symbol is FactorVariable) {
|
---|
| 146 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
| 147 | var products = new List<Term>();
|
---|
| 148 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) {
|
---|
| 149 | var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue);
|
---|
| 150 |
|
---|
| 151 | initialConstants.Add(factorVarNode.GetValue(variableValue));
|
---|
| 152 | var wVar = new AutoDiff.Variable();
|
---|
| 153 | variables.Add(wVar);
|
---|
| 154 |
|
---|
| 155 | products.Add(AutoDiff.TermBuilder.Product(wVar, par));
|
---|
| 156 | }
|
---|
| 157 | term = AutoDiff.TermBuilder.Sum(products);
|
---|
| 158 | return true;
|
---|
| 159 | }
|
---|
| 160 | if (node.Symbol is LaggedVariable) {
|
---|
| 161 | var varNode = node as LaggedVariableTreeNode;
|
---|
| 162 | var par = FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag);
|
---|
| 163 |
|
---|
| 164 | if (makeVariableWeightsVariable) {
|
---|
| 165 | initialConstants.Add(varNode.Weight);
|
---|
| 166 | var w = new AutoDiff.Variable();
|
---|
| 167 | variables.Add(w);
|
---|
| 168 | term = AutoDiff.TermBuilder.Product(w, par);
|
---|
| 169 | } else {
|
---|
| 170 | term = varNode.Weight * par;
|
---|
| 171 | }
|
---|
| 172 | return true;
|
---|
| 173 | }
|
---|
| 174 | if (node.Symbol is Addition) {
|
---|
| 175 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 176 | foreach (var subTree in node.Subtrees) {
|
---|
| 177 | AutoDiff.Term t;
|
---|
| 178 | if (!TryConvertToAutoDiff(subTree, out t)) {
|
---|
| 179 | term = null;
|
---|
| 180 | return false;
|
---|
| 181 | }
|
---|
| 182 | terms.Add(t);
|
---|
| 183 | }
|
---|
| 184 | term = AutoDiff.TermBuilder.Sum(terms);
|
---|
| 185 | return true;
|
---|
| 186 | }
|
---|
| 187 | if (node.Symbol is Subtraction) {
|
---|
| 188 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 189 | for (int i = 0; i < node.SubtreeCount; i++) {
|
---|
| 190 | AutoDiff.Term t;
|
---|
| 191 | if (!TryConvertToAutoDiff(node.GetSubtree(i), out t)) {
|
---|
| 192 | term = null;
|
---|
| 193 | return false;
|
---|
| 194 | }
|
---|
| 195 | if (i > 0) t = -t;
|
---|
| 196 | terms.Add(t);
|
---|
| 197 | }
|
---|
| 198 | if (terms.Count == 1) term = -terms[0];
|
---|
| 199 | else term = AutoDiff.TermBuilder.Sum(terms);
|
---|
| 200 | return true;
|
---|
| 201 | }
|
---|
| 202 | if (node.Symbol is Multiplication) {
|
---|
| 203 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 204 | foreach (var subTree in node.Subtrees) {
|
---|
| 205 | AutoDiff.Term t;
|
---|
| 206 | if (!TryConvertToAutoDiff(subTree, out t)) {
|
---|
| 207 | term = null;
|
---|
| 208 | return false;
|
---|
| 209 | }
|
---|
| 210 | terms.Add(t);
|
---|
| 211 | }
|
---|
| 212 | if (terms.Count == 1) term = terms[0];
|
---|
| 213 | else term = terms.Aggregate((a, b) => new AutoDiff.Product(a, b));
|
---|
| 214 | return true;
|
---|
| 215 |
|
---|
| 216 | }
|
---|
| 217 | if (node.Symbol is Division) {
|
---|
| 218 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 219 | foreach (var subTree in node.Subtrees) {
|
---|
| 220 | AutoDiff.Term t;
|
---|
| 221 | if (!TryConvertToAutoDiff(subTree, out t)) {
|
---|
| 222 | term = null;
|
---|
| 223 | return false;
|
---|
| 224 | }
|
---|
| 225 | terms.Add(t);
|
---|
| 226 | }
|
---|
| 227 | if (terms.Count == 1) term = 1.0 / terms[0];
|
---|
| 228 | else term = terms.Aggregate((a, b) => new AutoDiff.Product(a, 1.0 / b));
|
---|
| 229 | return true;
|
---|
| 230 | }
|
---|
| 231 | if (node.Symbol is Logarithm) {
|
---|
| 232 | AutoDiff.Term t;
|
---|
| 233 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 234 | term = null;
|
---|
| 235 | return false;
|
---|
| 236 | } else {
|
---|
| 237 | term = AutoDiff.TermBuilder.Log(t);
|
---|
| 238 | return true;
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 | if (node.Symbol is Exponential) {
|
---|
| 242 | AutoDiff.Term t;
|
---|
| 243 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 244 | term = null;
|
---|
| 245 | return false;
|
---|
| 246 | } else {
|
---|
| 247 | term = AutoDiff.TermBuilder.Exp(t);
|
---|
| 248 | return true;
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | if (node.Symbol is Square) {
|
---|
| 252 | AutoDiff.Term t;
|
---|
| 253 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 254 | term = null;
|
---|
| 255 | return false;
|
---|
| 256 | } else {
|
---|
| 257 | term = AutoDiff.TermBuilder.Power(t, 2.0);
|
---|
| 258 | return true;
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 | if (node.Symbol is SquareRoot) {
|
---|
| 262 | AutoDiff.Term t;
|
---|
| 263 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 264 | term = null;
|
---|
| 265 | return false;
|
---|
| 266 | } else {
|
---|
| 267 | term = AutoDiff.TermBuilder.Power(t, 0.5);
|
---|
| 268 | return true;
|
---|
| 269 | }
|
---|
| 270 | }
|
---|
| 271 | if (node.Symbol is Sine) {
|
---|
| 272 | AutoDiff.Term t;
|
---|
| 273 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 274 | term = null;
|
---|
| 275 | return false;
|
---|
| 276 | } else {
|
---|
| 277 | term = sin(t);
|
---|
| 278 | return true;
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | if (node.Symbol is Cosine) {
|
---|
| 282 | AutoDiff.Term t;
|
---|
| 283 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 284 | term = null;
|
---|
| 285 | return false;
|
---|
| 286 | } else {
|
---|
| 287 | term = cos(t);
|
---|
| 288 | return true;
|
---|
| 289 | }
|
---|
| 290 | }
|
---|
| 291 | if (node.Symbol is Tangent) {
|
---|
| 292 | AutoDiff.Term t;
|
---|
| 293 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 294 | term = null;
|
---|
| 295 | return false;
|
---|
| 296 | } else {
|
---|
| 297 | term = tan(t);
|
---|
| 298 | return true;
|
---|
| 299 | }
|
---|
| 300 | }
|
---|
| 301 | if (node.Symbol is Erf) {
|
---|
| 302 | AutoDiff.Term t;
|
---|
| 303 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 304 | term = null;
|
---|
| 305 | return false;
|
---|
| 306 | } else {
|
---|
| 307 | term = erf(t);
|
---|
| 308 | return true;
|
---|
| 309 | }
|
---|
| 310 | }
|
---|
| 311 | if (node.Symbol is Norm) {
|
---|
| 312 | AutoDiff.Term t;
|
---|
| 313 | if (!TryConvertToAutoDiff(node.GetSubtree(0), out t)) {
|
---|
| 314 | term = null;
|
---|
| 315 | return false;
|
---|
| 316 | } else {
|
---|
| 317 | term = norm(t);
|
---|
| 318 | return true;
|
---|
| 319 | }
|
---|
| 320 | }
|
---|
| 321 | if (node.Symbol is StartSymbol) {
|
---|
| 322 | var alpha = new AutoDiff.Variable();
|
---|
| 323 | var beta = new AutoDiff.Variable();
|
---|
| 324 | variables.Add(beta);
|
---|
| 325 | variables.Add(alpha);
|
---|
| 326 | AutoDiff.Term branchTerm;
|
---|
| 327 | if (TryConvertToAutoDiff(node.GetSubtree(0), out branchTerm)) {
|
---|
| 328 | term = branchTerm * alpha + beta;
|
---|
| 329 | return true;
|
---|
| 330 | } else {
|
---|
| 331 | term = null;
|
---|
| 332 | return false;
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 | term = null;
|
---|
| 336 | return false;
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 |
|
---|
| 340 | // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination
|
---|
| 341 | // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available
|
---|
| 342 | private static Term FindOrCreateParameter(Dictionary<DataForVariable, AutoDiff.Variable> parameters,
|
---|
| 343 | string varName, string varValue = "", int lag = 0) {
|
---|
| 344 | var data = new DataForVariable(varName, varValue, lag);
|
---|
| 345 |
|
---|
| 346 | AutoDiff.Variable par = null;
|
---|
| 347 | if (!parameters.TryGetValue(data, out par)) {
|
---|
| 348 | // not found -> create new parameter and entries in names and values lists
|
---|
| 349 | par = new AutoDiff.Variable();
|
---|
| 350 | parameters.Add(data, par);
|
---|
| 351 | }
|
---|
| 352 | return par;
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | public static bool IsCompatible(ISymbolicExpressionTree tree) {
|
---|
| 356 | var containsUnknownSymbol = (
|
---|
| 357 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
| 358 | where
|
---|
| 359 | !(n.Symbol is Variable) &&
|
---|
| 360 | !(n.Symbol is BinaryFactorVariable) &&
|
---|
| 361 | !(n.Symbol is FactorVariable) &&
|
---|
| 362 | !(n.Symbol is LaggedVariable) &&
|
---|
| 363 | !(n.Symbol is Constant) &&
|
---|
| 364 | !(n.Symbol is Addition) &&
|
---|
| 365 | !(n.Symbol is Subtraction) &&
|
---|
| 366 | !(n.Symbol is Multiplication) &&
|
---|
| 367 | !(n.Symbol is Division) &&
|
---|
| 368 | !(n.Symbol is Logarithm) &&
|
---|
| 369 | !(n.Symbol is Exponential) &&
|
---|
| 370 | !(n.Symbol is SquareRoot) &&
|
---|
| 371 | !(n.Symbol is Square) &&
|
---|
| 372 | !(n.Symbol is Sine) &&
|
---|
| 373 | !(n.Symbol is Cosine) &&
|
---|
| 374 | !(n.Symbol is Tangent) &&
|
---|
| 375 | !(n.Symbol is Erf) &&
|
---|
| 376 | !(n.Symbol is Norm) &&
|
---|
| 377 | !(n.Symbol is StartSymbol)
|
---|
| 378 | select n).Any();
|
---|
| 379 | return !containsUnknownSymbol;
|
---|
| 380 | }
|
---|
| 381 | }
|
---|
| 382 | }
|
---|