1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
25 | using HeuristicLab.Parameters;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
29 | /// <summary>
|
---|
30 | /// An operator that analyzes the validation best symbolic time-series prognosis solution for single objective symbolic time-series prognosis problems.
|
---|
31 | /// </summary>
|
---|
32 | [Item("SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer", "An operator that analyzes the validation best symbolic time-series prognosis solution for single objective symbolic time-series prognosis problems.")]
|
---|
33 | [StorableClass]
|
---|
34 | public sealed class SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationBestSolutionAnalyzer<ISymbolicTimeSeriesPrognosisSolution, ISymbolicTimeSeriesPrognosisSingleObjectiveEvaluator, ITimeSeriesPrognosisProblemData>, ISymbolicDataAnalysisBoundedOperator {
|
---|
35 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
36 | #region parameter properties
|
---|
37 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
38 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
39 | }
|
---|
40 | #endregion
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | private SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
44 | private SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer(SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
45 | public SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer()
|
---|
46 | : base() {
|
---|
47 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model."));
|
---|
48 | }
|
---|
49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
50 | return new SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer(this, cloner);
|
---|
51 | }
|
---|
52 |
|
---|
53 | protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
|
---|
54 | var model = new SymbolicTimeSeriesPrognosisModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
55 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
56 |
|
---|
57 | return new SymbolicTimeSeriesPrognosisSolution(model, (ITimeSeriesPrognosisProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
58 | }
|
---|
59 | }
|
---|
60 | }
|
---|