1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.Instances;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
31 | [Item("Symbolic Time-Series Prognosis Problem (single objective)", "Represents a single objective symbolic time-series prognosis problem.")]
|
---|
32 | [StorableClass]
|
---|
33 | [Creatable("Problems")]
|
---|
34 | public class SymbolicTimeSeriesPrognosisSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<ITimeSeriesPrognosisProblemData, ISymbolicTimeSeriesPrognosisSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, ITimeSeriesPrognosisProblem {
|
---|
35 | private const double PunishmentFactor = 10;
|
---|
36 | private const int InitialMaximumTreeDepth = 8;
|
---|
37 | private const int InitialMaximumTreeLength = 25;
|
---|
38 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
39 | private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
|
---|
40 |
|
---|
41 | #region parameter properties
|
---|
42 | public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
43 | get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
44 | }
|
---|
45 | #endregion
|
---|
46 | #region properties
|
---|
47 | public DoubleLimit EstimationLimits {
|
---|
48 | get { return EstimationLimitsParameter.Value; }
|
---|
49 | }
|
---|
50 | #endregion
|
---|
51 | [StorableConstructor]
|
---|
52 | protected SymbolicTimeSeriesPrognosisSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
|
---|
53 | protected SymbolicTimeSeriesPrognosisSingleObjectiveProblem(SymbolicTimeSeriesPrognosisSingleObjectiveProblem original, Cloner cloner) : base(original, cloner) { }
|
---|
54 | public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicTimeSeriesPrognosisSingleObjectiveProblem(this, cloner); }
|
---|
55 |
|
---|
56 | public SymbolicTimeSeriesPrognosisSingleObjectiveProblem()
|
---|
57 | : base(new TimeSeriesPrognosisProblemData(), new SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
|
---|
58 | Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
|
---|
59 | EstimationLimitsParameter.Hidden = true;
|
---|
60 |
|
---|
61 | Maximization.Value = false;
|
---|
62 | MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
|
---|
63 | MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
|
---|
64 |
|
---|
65 | var interpeter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter();
|
---|
66 | interpeter.TargetVariable = ProblemData.TargetVariable;
|
---|
67 | SymbolicExpressionTreeInterpreter = interpeter;
|
---|
68 |
|
---|
69 | SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
|
---|
70 | ConfigureGrammarSymbols();
|
---|
71 |
|
---|
72 | InitializeOperators();
|
---|
73 | UpdateEstimationLimits();
|
---|
74 | }
|
---|
75 |
|
---|
76 | private void ConfigureGrammarSymbols() {
|
---|
77 | var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
|
---|
78 | if (grammar != null) grammar.ConfigureAsDefaultTimeSeriesPrognosisGrammar();
|
---|
79 | UpdateGrammar();
|
---|
80 | }
|
---|
81 | protected override void UpdateGrammar() {
|
---|
82 | base.UpdateGrammar();
|
---|
83 | foreach (var autoregressiveSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<AutoregressiveTargetVariable>()) {
|
---|
84 | if (!autoregressiveSymbol.Fixed) autoregressiveSymbol.VariableNames = ProblemData.TargetVariable.ToEnumerable();
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 | private void InitializeOperators() {
|
---|
89 | Operators.Add(new SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer());
|
---|
90 | Operators.Add(new SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer());
|
---|
91 | Operators.Add(new SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer());
|
---|
92 | ParameterizeOperators();
|
---|
93 | }
|
---|
94 |
|
---|
95 | private void UpdateEstimationLimits() {
|
---|
96 | if (ProblemData.TrainingIndices.Any()) {
|
---|
97 | var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
|
---|
98 | var mean = targetValues.Average();
|
---|
99 | var range = targetValues.Max() - targetValues.Min();
|
---|
100 | EstimationLimits.Upper = mean + PunishmentFactor * range;
|
---|
101 | EstimationLimits.Lower = mean - PunishmentFactor * range;
|
---|
102 | } else {
|
---|
103 | EstimationLimits.Upper = double.MaxValue;
|
---|
104 | EstimationLimits.Lower = double.MinValue;
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | protected override void OnProblemDataChanged() {
|
---|
109 | base.OnProblemDataChanged();
|
---|
110 | var interpreter = SymbolicExpressionTreeInterpreter as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter;
|
---|
111 | if (interpreter != null) {
|
---|
112 | interpreter.TargetVariable = ProblemData.TargetVariable;
|
---|
113 | }
|
---|
114 | UpdateEstimationLimits();
|
---|
115 |
|
---|
116 | }
|
---|
117 |
|
---|
118 | protected override void ParameterizeOperators() {
|
---|
119 | base.ParameterizeOperators();
|
---|
120 | if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
|
---|
121 | var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
|
---|
122 | foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
|
---|
123 | op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
|
---|
124 | }
|
---|
125 | foreach (var op in operators.OfType<SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer>()) {
|
---|
126 | op.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
127 | op.ProblemDataParameter.ActualName = ProblemDataParameter.Name;
|
---|
128 | op.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName;
|
---|
129 | op.SymbolicDataAnalysisTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
|
---|
130 | op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | public override void Load(ITimeSeriesPrognosisProblemData data) {
|
---|
136 | base.Load(data);
|
---|
137 | this.ProblemData.TrainingPartition.Start =
|
---|
138 | Math.Min(10, this.ProblemData.TrainingPartition.End);
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|