[6802] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
| 30 | [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic time-series prognosis solution.")]
|
---|
| 31 | [StorableClass]
|
---|
| 32 | public class SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator : SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator {
|
---|
| 33 | [StorableConstructor]
|
---|
| 34 | protected SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 35 | protected SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)
|
---|
| 36 | : base(original, cloner) {
|
---|
| 37 | }
|
---|
| 38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 39 | return new SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
|
---|
| 43 |
|
---|
| 44 | public override bool Maximization { get { return false; } }
|
---|
| 45 |
|
---|
| 46 | public override IOperation Apply() {
|
---|
| 47 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 49 |
|
---|
| 50 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
|
---|
| 51 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 52 |
|
---|
| 53 | return base.Apply();
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows) {
|
---|
| 57 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
| 58 | IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 59 | IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
| 60 | OnlineCalculatorError errorState;
|
---|
| 61 | double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState);
|
---|
| 62 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 63 | else return mse;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows) {
|
---|
| 67 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 68 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 69 |
|
---|
| 70 | double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
|
---|
| 71 |
|
---|
| 72 |
|
---|
| 73 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 74 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 75 |
|
---|
| 76 | return mse;
|
---|
| 77 | }
|
---|
| 78 | }
|
---|
| 79 | }
|
---|