1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Windows.Forms;
|
---|
25 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
26 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.MainForm;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Views;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views {
|
---|
32 | [View("Error Characteristics Curve")]
|
---|
33 | [Content(typeof(ISymbolicTimeSeriesPrognosisSolution))]
|
---|
34 | public partial class SymbolicTimeSeriesPrognosisSolutionErrorCharacteristicsCurveView : TimeSeriesPrognosisSolutionErrorCharacteristicsCurveView {
|
---|
35 | private ITimeSeriesPrognosisSolution linearTimeSeriesPrognosisSolution;
|
---|
36 | private ITimeSeriesPrognosisSolution naiveSolution;
|
---|
37 |
|
---|
38 | public SymbolicTimeSeriesPrognosisSolutionErrorCharacteristicsCurveView() {
|
---|
39 | InitializeComponent();
|
---|
40 | }
|
---|
41 |
|
---|
42 | public new ISymbolicTimeSeriesPrognosisSolution Content {
|
---|
43 | get { return (ISymbolicTimeSeriesPrognosisSolution)base.Content; }
|
---|
44 | set { base.Content = value; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | protected override void OnContentChanged() {
|
---|
48 | if (Content != null) {
|
---|
49 | linearTimeSeriesPrognosisSolution = CreateLinearTimeSeriesPrognosisSolution();
|
---|
50 | naiveSolution = CreateNaiveSolution();
|
---|
51 | } else {
|
---|
52 | linearTimeSeriesPrognosisSolution = null;
|
---|
53 | naiveSolution = null;
|
---|
54 | }
|
---|
55 |
|
---|
56 | base.OnContentChanged();
|
---|
57 | }
|
---|
58 |
|
---|
59 | protected override void UpdateChart() {
|
---|
60 | base.UpdateChart();
|
---|
61 | if (Content == null || linearTimeSeriesPrognosisSolution == null) return;
|
---|
62 | AddTimeSeriesPrognosisSolution(linearTimeSeriesPrognosisSolution);
|
---|
63 | AddTimeSeriesPrognosisSolution(naiveSolution);
|
---|
64 | }
|
---|
65 |
|
---|
66 | private ITimeSeriesPrognosisSolution CreateLinearTimeSeriesPrognosisSolution() {
|
---|
67 | if (Content == null) throw new InvalidOperationException();
|
---|
68 | double rmse, cvRmsError;
|
---|
69 | var problemData = (ITimeSeriesPrognosisProblemData)ProblemData.Clone();
|
---|
70 |
|
---|
71 | //clear checked inputVariables
|
---|
72 | foreach (var inputVariable in problemData.InputVariables.CheckedItems) {
|
---|
73 | problemData.InputVariables.SetItemCheckedState(inputVariable.Value, false);
|
---|
74 | }
|
---|
75 |
|
---|
76 | //check inputVariables used in the symbolic time series prognosis model
|
---|
77 | var usedVariables =
|
---|
78 | Content.Model.SymbolicExpressionTree.IterateNodesPostfix().OfType<VariableTreeNode>().Select(
|
---|
79 | node => node.VariableName).Distinct();
|
---|
80 | foreach (var variable in usedVariables) {
|
---|
81 | problemData.InputVariables.SetItemCheckedState(
|
---|
82 | problemData.InputVariables.Where(x => x.Value == variable).First(), true);
|
---|
83 | }
|
---|
84 |
|
---|
85 | int maxLag = Content.Model.SymbolicExpressionTree.IterateNodesPostfix()
|
---|
86 | .OfType<LaggedVariableTreeNode>()
|
---|
87 | .Select(n => -n.Lag)
|
---|
88 | .Max();
|
---|
89 |
|
---|
90 | var solution = LinearTimeSeriesPrognosis.CreateLinearTimeSeriesPrognosisSolution(problemData, maxLag, out rmse, out cvRmsError);
|
---|
91 | solution.Name = "Linear Model";
|
---|
92 | return solution;
|
---|
93 | }
|
---|
94 | private ITimeSeriesPrognosisSolution CreateNaiveSolution() {
|
---|
95 | if (Content == null) throw new InvalidOperationException();
|
---|
96 | double rmse, cvRmsError;
|
---|
97 | var problemData = (ITimeSeriesPrognosisProblemData)ProblemData.Clone();
|
---|
98 |
|
---|
99 | //clear checked inputVariables
|
---|
100 | foreach (var inputVariable in problemData.InputVariables.CheckedItems) {
|
---|
101 | problemData.InputVariables.SetItemCheckedState(inputVariable.Value, false);
|
---|
102 | }
|
---|
103 |
|
---|
104 | foreach (var variable in problemData.InputVariables) {
|
---|
105 | if (variable.Value == problemData.TargetVariable) {
|
---|
106 | problemData.InputVariables.SetItemCheckedState(variable, true);
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | int maxLag = 1;
|
---|
111 |
|
---|
112 | var solution = LinearTimeSeriesPrognosis.CreateLinearTimeSeriesPrognosisSolution(problemData, maxLag, out rmse, out cvRmsError);
|
---|
113 | solution.Name = "AR(1) Model";
|
---|
114 | return solution;
|
---|
115 | }
|
---|
116 |
|
---|
117 | protected override void Content_ModelChanged(object sender, EventArgs e) {
|
---|
118 | linearTimeSeriesPrognosisSolution = CreateLinearTimeSeriesPrognosisSolution();
|
---|
119 | naiveSolution = CreateNaiveSolution();
|
---|
120 | base.Content_ModelChanged(sender, e);
|
---|
121 | }
|
---|
122 |
|
---|
123 | protected override void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
124 | linearTimeSeriesPrognosisSolution = CreateLinearTimeSeriesPrognosisSolution();
|
---|
125 | naiveSolution = CreateNaiveSolution();
|
---|
126 | base.Content_ProblemDataChanged(sender, e);
|
---|
127 | }
|
---|
128 |
|
---|
129 | private void chart_MouseDown(object sender, MouseEventArgs e) {
|
---|
130 | if (e.Clicks < 2) return;
|
---|
131 | HitTestResult result = chart.HitTest(e.X, e.Y);
|
---|
132 | if (result.ChartElementType != ChartElementType.LegendItem) return;
|
---|
133 | if (result.Series.Name == linearTimeSeriesPrognosisSolution.Name && result.Series.Name != naiveSolution.Name) return;
|
---|
134 |
|
---|
135 | MainFormManager.MainForm.ShowContent((ITimeSeriesPrognosisSolution)result.Series.Tag);
|
---|
136 | }
|
---|
137 | }
|
---|
138 | }
|
---|