[8798] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8798] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Views;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views {
|
---|
| 30 | public partial class InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView {
|
---|
| 31 | private readonly ConstantTreeNode constantNode;
|
---|
| 32 | private readonly SymbolicExpressionTree tempTree;
|
---|
| 33 |
|
---|
| 34 | public new SymbolicTimeSeriesPrognosisSolution Content {
|
---|
| 35 | get { return (SymbolicTimeSeriesPrognosisSolution)base.Content; }
|
---|
| 36 | set { base.Content = value; }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | public InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView()
|
---|
| 40 | : base() {
|
---|
| 41 | InitializeComponent();
|
---|
| 42 | this.Caption = "Interactive Time-Series Prognosis Solution Simplifier";
|
---|
| 43 |
|
---|
| 44 | constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
|
---|
| 45 | ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 46 | ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
|
---|
| 47 | root.AddSubtree(start);
|
---|
| 48 | tempTree = new SymbolicExpressionTree(root);
|
---|
| 49 | }
|
---|
| 50 |
|
---|
[10492] | 51 | protected override Dictionary<ISymbolicExpressionTreeNode, Tuple<double, double>> CalculateImpactAndReplacementValues(ISymbolicExpressionTree tree) {
|
---|
[8798] | 52 | var interpreter = Content.Model.Interpreter;
|
---|
| 53 | var rows = Content.ProblemData.TrainingIndices;
|
---|
| 54 | var dataset = Content.ProblemData.Dataset;
|
---|
| 55 | var targetVariable = Content.ProblemData.TargetVariable;
|
---|
| 56 | var targetValues = dataset.GetDoubleValues(targetVariable, rows);
|
---|
| 57 | var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).ToArray();
|
---|
| 58 |
|
---|
[10492] | 59 | var impactAndReplacementValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, double>>();
|
---|
[8798] | 60 | List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
|
---|
| 61 | OnlineCalculatorError errorState;
|
---|
[12641] | 62 | double originalR = OnlinePearsonsRCalculator.Calculate(targetValues, originalOutput, out errorState);
|
---|
| 63 | if (errorState != OnlineCalculatorError.None) originalR = 0.0;
|
---|
[8798] | 64 |
|
---|
| 65 | foreach (ISymbolicExpressionTreeNode node in nodes) {
|
---|
| 66 | var parent = node.Parent;
|
---|
| 67 | constantNode.Value = CalculateReplacementValue(node, tree);
|
---|
| 68 | ISymbolicExpressionTreeNode replacementNode = constantNode;
|
---|
| 69 | SwitchNode(parent, node, replacementNode);
|
---|
| 70 | var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows);
|
---|
[12641] | 71 | double newR = OnlinePearsonsRCalculator.Calculate(targetValues, newOutput, out errorState);
|
---|
| 72 | if (errorState != OnlineCalculatorError.None) newR = 0.0;
|
---|
[8798] | 73 |
|
---|
| 74 | // impact = 0 if no change
|
---|
| 75 | // impact < 0 if new solution is better
|
---|
| 76 | // impact > 0 if new solution is worse
|
---|
[12641] | 77 | double impact = (originalR*originalR) - (newR*newR);
|
---|
[10492] | 78 | impactAndReplacementValues[node] = new Tuple<double, double>(impact, constantNode.Value);
|
---|
[8798] | 79 | SwitchNode(parent, replacementNode, node);
|
---|
| 80 | }
|
---|
[10492] | 81 | return impactAndReplacementValues;
|
---|
[8798] | 82 | }
|
---|
| 83 |
|
---|
[10492] | 84 | protected override void UpdateModel(ISymbolicExpressionTree tree) {
|
---|
| 85 | var model = new SymbolicTimeSeriesPrognosisModel(tree, Content.Model.Interpreter);
|
---|
| 86 | model.Scale(Content.ProblemData);
|
---|
| 87 | Content.Model = model;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree) {
|
---|
| 91 | var replacementValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
|
---|
| 92 | foreach (var componentBranch in tree.Root.GetSubtree(0).Subtrees)
|
---|
| 93 | foreach (ISymbolicExpressionTreeNode node in componentBranch.IterateNodesPrefix()) {
|
---|
| 94 | replacementValues[node] = CalculateReplacementValue(node, tree);
|
---|
| 95 | }
|
---|
| 96 | return replacementValues;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree) {
|
---|
| 100 | var impactAndReplacementValues = CalculateImpactAndReplacementValues(tree);
|
---|
| 101 | return impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item1); // item1 of the tuple is the impact value
|
---|
| 102 | }
|
---|
| 103 |
|
---|
[8798] | 104 | private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) {
|
---|
| 105 | // remove old ADFs
|
---|
| 106 | while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1);
|
---|
| 107 | // clone ADFs of source tree
|
---|
| 108 | for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
|
---|
| 109 | tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
|
---|
| 110 | }
|
---|
| 111 | var start = tempTree.Root.GetSubtree(0);
|
---|
| 112 | while (start.SubtreeCount > 0) start.RemoveSubtree(0);
|
---|
| 113 | start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
|
---|
| 114 | var interpreter = Content.Model.Interpreter;
|
---|
| 115 | var rows = Content.ProblemData.TrainingIndices;
|
---|
| 116 | var allPrognosedValues = interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows);
|
---|
| 117 |
|
---|
| 118 | return allPrognosedValues.Median();
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
|
---|
| 123 | for (int i = 0; i < root.SubtreeCount; i++) {
|
---|
| 124 | if (root.GetSubtree(i) == oldBranch) {
|
---|
| 125 | root.RemoveSubtree(i);
|
---|
| 126 | root.InsertSubtree(i, newBranch);
|
---|
| 127 | return;
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | protected override void btnOptimizeConstants_Click(object sender, EventArgs e) {
|
---|
| 133 | throw new NotImplementedException();
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 | }
|
---|