[8409] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8409] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[10469] | 22 | using System;
|
---|
[8409] | 23 | using System.Collections.Generic;
|
---|
[8935] | 24 | using HeuristicLab.Common;
|
---|
[10469] | 25 | using HeuristicLab.Core;
|
---|
[8409] | 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[10469] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[8409] | 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[10469] | 30 | [StorableClass]
|
---|
| 31 | [Item("SymbolicRegressionSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for regression problems.")]
|
---|
[8409] | 32 | public class SymbolicRegressionSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
[10469] | 33 | public SymbolicRegressionSolutionImpactValuesCalculator() { }
|
---|
| 34 |
|
---|
| 35 | protected SymbolicRegressionSolutionImpactValuesCalculator(SymbolicRegressionSolutionImpactValuesCalculator original, Cloner cloner)
|
---|
| 36 | : base(original, cloner) { }
|
---|
| 37 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 38 | return new SymbolicRegressionSolutionImpactValuesCalculator(this, cloner);
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | [StorableConstructor]
|
---|
| 42 | protected SymbolicRegressionSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
|
---|
[8946] | 43 | public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows) {
|
---|
| 44 | var regressionModel = (ISymbolicRegressionModel)model;
|
---|
| 45 | var regressionProblemData = (IRegressionProblemData)problemData;
|
---|
| 46 |
|
---|
| 47 | return CalculateReplacementValue(node, regressionModel.SymbolicExpressionTree, regressionModel.Interpreter, regressionProblemData.Dataset, rows);
|
---|
[8409] | 48 | }
|
---|
| 49 |
|
---|
[12720] | 50 | public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN) {
|
---|
| 51 | double impactValue, replacementValue, newQualityForImpactsCalculation;
|
---|
| 52 | CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation);
|
---|
[10469] | 53 | return impactValue;
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node,
|
---|
[12720] | 57 | IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation,
|
---|
| 58 | double qualityForImpactsCalculation = Double.NaN) {
|
---|
[8946] | 59 | var regressionModel = (ISymbolicRegressionModel)model;
|
---|
| 60 | var regressionProblemData = (IRegressionProblemData)problemData;
|
---|
| 61 |
|
---|
| 62 | var dataset = regressionProblemData.Dataset;
|
---|
| 63 | var targetValues = dataset.GetDoubleValues(regressionProblemData.TargetVariable, rows);
|
---|
| 64 |
|
---|
[8409] | 65 | OnlineCalculatorError errorState;
|
---|
[12720] | 66 | if (double.IsNaN(qualityForImpactsCalculation))
|
---|
| 67 | qualityForImpactsCalculation = CalculateQualityForImpacts(regressionModel, regressionProblemData, rows);
|
---|
[8409] | 68 |
|
---|
[10469] | 69 | replacementValue = CalculateReplacementValue(regressionModel, node, regressionProblemData, rows);
|
---|
[8946] | 70 | var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue };
|
---|
[9840] | 71 |
|
---|
[8946] | 72 | var cloner = new Cloner();
|
---|
| 73 | var tempModel = cloner.Clone(regressionModel);
|
---|
[9840] | 74 | var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node);
|
---|
[8409] | 75 |
|
---|
[9840] | 76 | var tempModelParentNode = tempModelNode.Parent;
|
---|
| 77 | int i = tempModelParentNode.IndexOfSubtree(tempModelNode);
|
---|
| 78 | tempModelParentNode.RemoveSubtree(i);
|
---|
| 79 | tempModelParentNode.InsertSubtree(i, constantNode);
|
---|
| 80 |
|
---|
[8946] | 81 | var estimatedValues = tempModel.GetEstimatedValues(dataset, rows);
|
---|
[12720] | 82 | double r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
| 83 | if (errorState != OnlineCalculatorError.None) r = 0.0;
|
---|
| 84 | newQualityForImpactsCalculation = r * r;
|
---|
[8935] | 85 |
|
---|
[12720] | 86 | impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation;
|
---|
[8409] | 87 | }
|
---|
[12720] | 88 |
|
---|
| 89 | public static double CalculateQualityForImpacts(ISymbolicRegressionModel model, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 90 | var estimatedValues = model.GetEstimatedValues(problemData.Dataset, rows); // also bounds the values
|
---|
| 91 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 92 | OnlineCalculatorError errorState;
|
---|
| 93 | var r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
| 94 | var quality = r * r;
|
---|
| 95 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 96 | return quality;
|
---|
| 97 | }
|
---|
[8409] | 98 | }
|
---|
| 99 | }
|
---|