[5607] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using System;
|
---|
| 33 |
|
---|
[5624] | 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[5607] | 35 | /// <summary>
|
---|
| 36 | /// Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity
|
---|
| 37 | /// </summary>
|
---|
| 38 | [StorableClass]
|
---|
| 39 | [Item(Name = "SymbolicRegressionSolution", Description = "Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity.")]
|
---|
[5717] | 40 | public sealed class SymbolicRegressionSolution : RegressionSolution, ISymbolicRegressionSolution {
|
---|
[5736] | 41 | private const string ModelLengthResultName = "ModelLength";
|
---|
| 42 | private const string ModelDepthResultName = "ModelDepth";
|
---|
| 43 |
|
---|
[5624] | 44 | public new ISymbolicRegressionModel Model {
|
---|
| 45 | get { return (ISymbolicRegressionModel)base.Model; }
|
---|
[5717] | 46 | set { base.Model = value; }
|
---|
[5607] | 47 | }
|
---|
[5624] | 48 | ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
|
---|
| 49 | get { return (ISymbolicDataAnalysisModel)base.Model; }
|
---|
[5607] | 50 | }
|
---|
[5736] | 51 | public int ModelLength {
|
---|
| 52 | get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
|
---|
| 53 | private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
|
---|
| 54 | }
|
---|
[5607] | 55 |
|
---|
[5736] | 56 | public int ModelDepth {
|
---|
| 57 | get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
|
---|
| 58 | private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[5607] | 61 | [StorableConstructor]
|
---|
[5717] | 62 | private SymbolicRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
| 63 | private SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
|
---|
[5607] | 64 | : base(original, cloner) {
|
---|
| 65 | }
|
---|
[5624] | 66 | public SymbolicRegressionSolution(ISymbolicRegressionModel model, IRegressionProblemData problemData)
|
---|
| 67 | : base(model, problemData) {
|
---|
[5736] | 68 | Add(new Result(ModelLengthResultName, "Length of the symbolic regression model.", new IntValue()));
|
---|
| 69 | Add(new Result(ModelDepthResultName, "Depth of the symbolic regression model.", new IntValue()));
|
---|
| 70 | RecalculateResults();
|
---|
[5607] | 71 | }
|
---|
| 72 |
|
---|
| 73 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 74 | return new SymbolicRegressionSolution(this, cloner);
|
---|
| 75 | }
|
---|
[5729] | 76 |
|
---|
[5736] | 77 | protected override void OnModelChanged(EventArgs e) {
|
---|
| 78 | base.OnModelChanged(e);
|
---|
| 79 | RecalculateResults();
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | private new void RecalculateResults() {
|
---|
| 83 | ModelLength = Model.SymbolicExpressionTree.Length;
|
---|
| 84 | ModelDepth = Model.SymbolicExpressionTree.Depth;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
[5729] | 87 | public void ScaleModel() {
|
---|
| 88 | var dataset = ProblemData.Dataset;
|
---|
| 89 | var targetVariable = ProblemData.TargetVariable;
|
---|
| 90 | var rows = ProblemData.TrainingIndizes;
|
---|
| 91 | var estimatedValues = GetEstimatedValues(rows);
|
---|
| 92 | var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
| 93 | double alpha;
|
---|
| 94 | double beta;
|
---|
| 95 | OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta);
|
---|
| 96 |
|
---|
| 97 | ConstantTreeNode alphaTreeNode = null;
|
---|
| 98 | ConstantTreeNode betaTreeNode = null;
|
---|
| 99 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
[5733] | 100 | var startNode = Model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
| 101 | if (startNode.GetSubtree(0).Symbol is Addition) {
|
---|
| 102 | var addNode = startNode.GetSubtree(0);
|
---|
| 103 | if (addNode.SubtreesCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 104 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 105 | var mulNode = addNode.GetSubtree(0);
|
---|
| 106 | if (mulNode.SubtreesCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 107 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
[5729] | 108 | }
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
| 112 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
| 113 | betaTreeNode.Value *= beta;
|
---|
| 114 | alphaTreeNode.Value *= beta;
|
---|
| 115 | alphaTreeNode.Value += alpha;
|
---|
| 116 | } else {
|
---|
[5733] | 117 | var mainBranch = startNode.GetSubtree(0);
|
---|
| 118 | startNode.RemoveSubtree(0);
|
---|
[5729] | 119 | var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
|
---|
[5733] | 120 | startNode.AddSubtree(scaledMainBranch);
|
---|
[5729] | 121 | }
|
---|
| 122 |
|
---|
| 123 | OnModelChanged(EventArgs.Empty);
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
| 127 | if (alpha.IsAlmost(0.0)) {
|
---|
| 128 | return treeNode;
|
---|
| 129 | } else {
|
---|
| 130 | var node = (new Addition()).CreateTreeNode();
|
---|
| 131 | var alphaConst = MakeConstant(alpha);
|
---|
[5733] | 132 | node.AddSubtree(treeNode);
|
---|
| 133 | node.AddSubtree(alphaConst);
|
---|
[5729] | 134 | return node;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | private static ISymbolicExpressionTreeNode MakeProduct(double beta, ISymbolicExpressionTreeNode treeNode) {
|
---|
| 139 | if (beta.IsAlmost(1.0)) {
|
---|
| 140 | return treeNode;
|
---|
| 141 | } else {
|
---|
| 142 | var node = (new Multiplication()).CreateTreeNode();
|
---|
| 143 | var betaConst = MakeConstant(beta);
|
---|
[5733] | 144 | node.AddSubtree(treeNode);
|
---|
| 145 | node.AddSubtree(betaConst);
|
---|
[5729] | 146 | return node;
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
| 151 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 152 | node.Value = c;
|
---|
| 153 | return node;
|
---|
| 154 | }
|
---|
[5607] | 155 | }
|
---|
| 156 | }
|
---|