1 | using System.Linq;
|
---|
2 | using HeuristicLab.Common;
|
---|
3 | using HeuristicLab.Core;
|
---|
4 | using HeuristicLab.Parameters;
|
---|
5 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
8 | [StorableClass]
|
---|
9 | [Item("SymbolicRegressionPruningOperator", "An operator which prunes symbolic regression trees.")]
|
---|
10 | public class SymbolicRegressionPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
|
---|
11 | private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";
|
---|
12 | private const string ImpactValuesCalculatorParameterDescription = "The impact values calculator to be used for figuring out the node impacts.";
|
---|
13 |
|
---|
14 | private const string EvaluatorParameterName = "Evaluator";
|
---|
15 |
|
---|
16 | public ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator> EvaluatorParameter {
|
---|
17 | get { return (ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
18 | }
|
---|
19 |
|
---|
20 | protected SymbolicRegressionPruningOperator(SymbolicRegressionPruningOperator original, Cloner cloner)
|
---|
21 | : base(original, cloner) {
|
---|
22 | }
|
---|
23 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
24 | return new SymbolicRegressionPruningOperator(this, cloner);
|
---|
25 | }
|
---|
26 |
|
---|
27 | [StorableConstructor]
|
---|
28 | protected SymbolicRegressionPruningOperator(bool deserializing) : base(deserializing) { }
|
---|
29 |
|
---|
30 | public SymbolicRegressionPruningOperator() {
|
---|
31 | var impactValuesCalculator = new SymbolicRegressionSolutionImpactValuesCalculator();
|
---|
32 | Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, ImpactValuesCalculatorParameterDescription, impactValuesCalculator));
|
---|
33 | Parameters.Add(new LookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>(EvaluatorParameterName));
|
---|
34 | }
|
---|
35 |
|
---|
36 | protected override ISymbolicDataAnalysisModel CreateModel() {
|
---|
37 | return new SymbolicRegressionModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper);
|
---|
38 | }
|
---|
39 |
|
---|
40 | protected override double Evaluate(IDataAnalysisModel model) {
|
---|
41 | var regressionModel = (IRegressionModel)model;
|
---|
42 | var regressionProblemData = (IRegressionProblemData)ProblemData;
|
---|
43 | var trainingIndices = ProblemData.TrainingIndices.ToList();
|
---|
44 | var estimatedValues = regressionModel.GetEstimatedValues(ProblemData.Dataset, trainingIndices); // also bounds the values
|
---|
45 | var targetValues = ProblemData.Dataset.GetDoubleValues(regressionProblemData.TargetVariable, trainingIndices);
|
---|
46 | OnlineCalculatorError errorState;
|
---|
47 | var quality = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
48 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
49 | return quality;
|
---|
50 | }
|
---|
51 | }
|
---|
52 | }
|
---|