[10469] | 1 | using System.Linq;
|
---|
| 2 | using HeuristicLab.Common;
|
---|
| 3 | using HeuristicLab.Core;
|
---|
| 4 | using HeuristicLab.Parameters;
|
---|
| 5 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 8 | [StorableClass]
|
---|
| 9 | [Item("SymbolicRegressionPruningOperator", "An operator which prunes symbolic regression trees.")]
|
---|
| 10 | public class SymbolicRegressionPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
|
---|
| 11 | private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";
|
---|
| 12 | private const string ImpactValuesCalculatorParameterDescription = "The impact values calculator to be used for figuring out the node impacts.";
|
---|
| 13 |
|
---|
| 14 | private const string EvaluatorParameterName = "Evaluator";
|
---|
| 15 |
|
---|
| 16 | public ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator> EvaluatorParameter {
|
---|
| 17 | get { return (ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
| 18 | }
|
---|
| 19 |
|
---|
| 20 | protected SymbolicRegressionPruningOperator(SymbolicRegressionPruningOperator original, Cloner cloner)
|
---|
| 21 | : base(original, cloner) {
|
---|
| 22 | }
|
---|
| 23 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 24 | return new SymbolicRegressionPruningOperator(this, cloner);
|
---|
| 25 | }
|
---|
| 26 |
|
---|
| 27 | [StorableConstructor]
|
---|
| 28 | protected SymbolicRegressionPruningOperator(bool deserializing) : base(deserializing) { }
|
---|
| 29 |
|
---|
| 30 | public SymbolicRegressionPruningOperator() {
|
---|
| 31 | var impactValuesCalculator = new SymbolicRegressionSolutionImpactValuesCalculator();
|
---|
| 32 | Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, ImpactValuesCalculatorParameterDescription, impactValuesCalculator));
|
---|
| 33 | Parameters.Add(new LookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>(EvaluatorParameterName));
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | protected override ISymbolicDataAnalysisModel CreateModel() {
|
---|
| 37 | return new SymbolicRegressionModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper);
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | protected override double Evaluate(IDataAnalysisModel model) {
|
---|
| 41 | var regressionModel = (IRegressionModel)model;
|
---|
| 42 | var regressionProblemData = (IRegressionProblemData)ProblemData;
|
---|
| 43 | var trainingIndices = ProblemData.TrainingIndices.ToList();
|
---|
| 44 | var estimatedValues = regressionModel.GetEstimatedValues(ProblemData.Dataset, trainingIndices); // also bounds the values
|
---|
| 45 | var targetValues = ProblemData.Dataset.GetDoubleValues(regressionProblemData.TargetVariable, trainingIndices);
|
---|
| 46 | OnlineCalculatorError errorState;
|
---|
| 47 | var quality = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
| 48 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 49 | return quality;
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 | }
|
---|