[7726] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 26 | using HeuristicLab.Parameters;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 30 | /// <summary>
|
---|
| 31 | /// An operator that collects the training Pareto-best symbolic regression solutions for single objective symbolic regression problems.
|
---|
| 32 | /// </summary>
|
---|
| 33 | [Item("SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer", "An operator that collects the training Pareto-best symbolic regression solutions for single objective symbolic regression problems.")]
|
---|
| 34 | [StorableClass]
|
---|
[8169] | 35 | public sealed class SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer<IRegressionProblemData, ISymbolicRegressionSolution> {
|
---|
[7726] | 36 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
| 37 | #region parameter properties
|
---|
| 38 | public IValueParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 39 | get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
| 40 | }
|
---|
| 41 | #endregion
|
---|
| 42 |
|
---|
| 43 | #region properties
|
---|
| 44 | public BoolValue ApplyLinearScaling {
|
---|
| 45 | get { return ApplyLinearScalingParameter.Value; }
|
---|
| 46 | }
|
---|
| 47 | #endregion
|
---|
| 48 |
|
---|
| 49 | [StorableConstructor]
|
---|
| 50 | private SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 51 | private SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer(SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 52 | public SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer()
|
---|
| 53 | : base() {
|
---|
| 54 | Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true)));
|
---|
| 55 | }
|
---|
| 56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 57 | return new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer(this, cloner);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree) {
|
---|
| 61 | var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
| 62 | if (ApplyLinearScaling.Value)
|
---|
| 63 | SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue);
|
---|
| 64 | return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
| 65 | }
|
---|
| 66 | }
|
---|
| 67 | }
|
---|